
The WAR FTP Daemon

WAR FTP DAEMON
Ver. 1.65. Released at Apr 24. 1997

Copyright ©1996, 1997 by Jarle (jgaa) Aase. All rights reserved.

WAR FTP Daemon is the premier FTP server for Windows 95 and NT. No other FTP server application brings
together the UNIX style security features, a BBS like Windows interface for the system operator, the extreme
flexibility, Win95 and NT 4 OLE support, the multithreading design and the advanced software technology and
performance provided by this package!

And despite the technical quality, the package is released as freeware; available on CD's, and spread all over Internet
on a large number of HTTP servers, FTP servers and BBS systems. Provided that you accept the license agreement,
you can use this software freely without registering or paying for it.

War FTP Daemon follows the RFC 959 and 1123 specifications (with industry standard extensions) of the FTP
protocol. It is running as an user application, or (optionally) as a system service on NT. On secure systems, the users
that log into the system will have access to the files available for the (operating system) user-account that started the
program. Within this limitation, it also provides a powerful internal directory level security subsystem.

War FTP Daemon is written for personal and professional use. It’s popularity is growing very fast, and already after
less than 6 months availability, the server was established as the premier FTP server for the 32 bit Windows
platform, with top ratings on all major software listings that have evaluated/tested the program.

War FTP Daemon should not be used for any sensitive files, as anyone with a TCP/IP protocol analyzer and access
to the physical transmission layer (cables) will be able to tap any data transmitted. (This is not a limitation in this
program, it is a general limitation with the FTP protocol specification and applies to all servers using the standard
FTP protocol interface.) Be aware that most of the common used encryption programs and protocols can be easily
cracked by hackers, industrial “spy’s” and law enforcement agencies.

Table of contents
Design Please read this section before setting up the system.
The system console
The menu
The toolbar
Specifications
Technical support
About the author

The latest version of the server is always available at:

http://www.jgaa.com
http://home.sol.no/jgaa/

The web site also host a FAQ and updated support and contact information.

You are welcome to use the newsgroup news:alt.comp.jgaa for comments, suggestions, questions and to stay

updated on the development of new versions.

Note: The War FTP Daemon is released as copyrighted freeware. See the license agreement for details. You do not
need to register or pay in order to use this software.

Author is:
Jarle Aase, Bergen, Norway.
For information: info@jgaa.com (email, auto-responder)
Private Email: jgaa@jgaa.com

The design of the War FTP Daemon
Users, groups and classes

A user in the FTP Daemon is a record of information including a login-name, a password, and a long list of
different security properties. To ease the maintenance of the system, each user belong in a user-group and a
user-class. If a security option is not set explicit on a user, the daemon looks in the group, class and finally,
- if it still can't find a determinant value, in the system default setup.

· NOTE: A group or a class can NOT log in to the daemon. Only users can log in.

Let's take an example. A user has logged in and issues a "CD /pub/windows" command from his FTP
client program. The server looks in the users table of paths without finding the path. It goes on to the group,
fails, goes on to the class, where (in this case) the path was defined. However, there was not defined any
permissions. The server then look up the users default file permissions, where it fails to find any default
read or deny-read flags. It goes on to the group, class and finally the default setup, where it finds a read
flag. The user is then given access to the file. If the daemon had encountered a deny-read flag anywhere in
this process, the user would have been denied access.

The advantage of this design is that it makes it easy to maintain a large system, with many users and even
more directories. When you attach a user to a group, it inherits all the permissions of this group. When you
attach a user to a class, it inherits all the permissions of the class.

The disadvantage is that it can be difficult to keep track of the permissions in all 4 layers

Default
Class

Group
User

To resolve this problem, the server has a number of reports that will show you the actual permissions of a
user.

If you don't need all this flexibility, you can simply turn it off and maintain only the user and default
properties. If you use the system on your home-PC, providing a FTP service to your friends, I will suggest
this. You still have the same level of security over the files you don't want to share.

The advanced options are turned off by default. To enable them, go to the menu General Options tab.

All security functions search in this order:

User > Group > Class > Default.

If a determinant value is found, it stops the search and uses that value. This means that if a class is denied
access, while one of the users in this class has an explicit Account-open flag, this user will get access, while
the rest of the users in his class will be denied access.

When you examine the security dialogs, you will find that most options has three states:

 Yes
No
 Default

 Default means: Look at the next level.

Root dir and home dir

This FTP server introduces the concept of both a home and a root directory. On other servers for
DOS/Windows, this is usually not available. However, on UNIX/NT FTP servers, the users have a regular
user account with the operating system, and hence a home directory and a root directory. This server does
not touch the NT user database, but keeps it's own user database where all restrictions and permissions are
kept. This database is encrypted.

The root directory is the highest level of the directory structure the user is allowed to move. Usually you
will "map" any allowed paths outside the root directory, making it look like the path actually are a part of
the users root path.

Example:
C:\usr\pub\ftp > Root directory
D:\Apps > Mapped to root > (looks like) /c/usr/pub/ftp/Apps

 > (or, if root maps to root) /Apps

In addition to this, each user can have a "home" directory. This is the directory that will be the current
directory when the user logs on. The server does not give any special permissions to the home directory.

Using secure home dirs

Some FTP configurations will offer users their own private home directories. You can do this by locating
the home directories in a path where the users normally don't have access:

level Path Flags
--------- ------------------------------------- ---
Group C:\usr\pub\ftp Root directory
Group C:\usr\pub\ftp\users Directory specified with deny flag, preventing any access.
User C:\usr\pub\ftp\users\JoeD Home dir of JoeD, mapped to root

This scenario denies everyone access to the users dir, except JoeD that have full permissions to his own
directory, and will find the dir, not under users, but under /c/pub/ftp/JoeD or just /JoeD (if root is mapped to
root). However, JoeD will only have access to his own homedir, not to any other user-directories in the
users directory structure.

See the File Access section for more information on how to set up directories and permissions.

System security

When the server is first started, it adds it's own working directory to the system wide list of paths, with the
deny flag set. This prevents any FTP access to the FTP directory.

The database "FtpDaemon.dat" is encrypted. This makes it useless for any browsing. User passwords can
not be seen unless you monitor the TCP/IP packages, or turn on the logging of the control connection.

License agreement

The WAR FTP Daemon is a PC based FTP server for Win95 and Windows NT 3.51 or better. It is released as
“freeware” under the following conditions:

· You might not charge anything for the distribution of this software, but the actual costs of media, shipping
etc.

· This software comes without any guarantee of any kind. The author TAKE NO RESPONSIBILITY FOR
ANY DAMAGE, LOSS OF INCOME, OR ANY OTHER PROBLEMS YOU MIGHT EXPERIENCE
FROM USING THIS SOFTWARE.

· This software is NOT TO BE USED by any governmental or mainstream political institutions in any
country. The freeware policy does ONLY apply for private individuals and private corporations. The
governmental and mainstream political organizations can go and get their software somewhere else.
Universities, schools and other public educational institutions can use this software as they wish.

· Jarle Aase keeps the full Copyright of all this software and documentation, and reserves the right to change
this policy at any time.

The system console (Main window)

The system console is the main window for the War FTP Daemon.

The console contains the following parts:

Menu bar
Toolbar
User List
System Attributes
Messages from the Users
Log Window
System Status

Toolbar

 Go Online
 Go Offline
 Retart the Virtual File System
 Stop the Virtual File System
 View the Virtual File System
 Options
 Security: Edit All
 Security: Edit User
 Security: Edit Group
 Security: Edit Class
 Security: Edit Default setup
 Clear Log Window
 Exit

Menu
Properties
View
Help

Help
Contents
Search For Help On
Bug Report
About

View
Reports
Messages
Macros
Clear Log Window

Reports
User Access Privileges
User Home and Root Dir
User Paths
Password Properties
Up Download Statistics

Properties Menu
General
Security
Options System configuration
VfSys
Stop Service
Start Service
Import
Exit

Security menu items

    Edit User Edit the security properties on the user level
 Edit Group Edit the security properties on the group level
 Edit Class Edit the security properties on the class level
 Edit Default Edit the security properties on the default level
    Edit All Edit the security properties on all levels

Note. This help file does only explain the Edit All mode, as the dialog used for all levels are very similar.

Virtual File System menu items

Restart
Stop
View
Flush

See also: Virtual File System. and Virtual File System Options

Import Menu Items
Serv-U Database

The War FTP Daemon is capable of importing the user database from other FTP servers. This feature is added to
ease migration for sites with large number of users.

Note: Every FTP server has it's own design and it's own way of doing things. There is no standard data exchange
format. This gives a number of limitations in the import process. The import module will try to make the migration
as smooth as possible, but you should check the different reports to make sure that everything is OK. You should
also log in as different users and verify that the permissions are correct. (If you have 500 users, you don't have to log
in 500 times).

Import a Serv-U Database

Serv-U stores it's user information in a (almost) standard Windows .ini file named Serv-u.ini. All information is
available as clear text, except the password, that is scrambled with the DES13 method. War FTP Daemon has it's
own way of handling passwords, but it can also deal with DES13. The imported users will also keep their old
passwords unchanged.

Version

Select the version of the database you will import.

Existent Users

Replace. If a user in the Serv-U database has the same name as an existent War user, the current War user
will be deleted and replaces with the user from Serv-U

Skip. If a user in the Serv-U database has the same name as an existent War user, the user will not be
imported and the current War user will remain untouched.

Ask. The server will ask what to do.

Note: The users Anonymous and ALL will not be imported.

Root Directory

Serv-U does not have root path's. War therefore have to know how you want it to handle the imported user
accounts.

Use Path. Specify a path that will be assigned as root for all the imported users.

Serv-U's Home... Set the users home path in the Serv-U database as root path for each user. This will
normally be a bad idea.

Don't... War will leave the users without root-path's so that the root path can be defined at the Class or
Default level.

Root Properties

If you have chosen to give the users root-path's, you can specify the basic root properties

Map... The users root path will appear as / (top level) to the user.

Recursive... The permissions granted for root (which is the default permissions) will be given recursively
to all directories beneath the root. This property should always be enabled.

Clear Log Window

Toolbar:
Menu: Properties/Vfsys

Clears the log window on the System Console.

The log file is not affected.

Stop the Virtual File System

Toolbar:
Menu: Properties/Vfsys

Stops the Virtual File System.

This can be done while the server is online, but not if there are any users logged in.

If the Virtual File System is stopped, the server will fall back to the normal file system. Users with \ as root path will
get access to all drives and paths, except paths that are defined with the deny flag.

See also: Virtual File System. and Virtual File System Options

Restart the Virtual File System

Toolbar:
Menu: Properties/Vfsys

Starts or re-starts the Virtual File System. The Virtual File System can be started when the server is offline and when
it is online and no one is logged in. If it already is running it can be restarted at any time.

When the Virtual File System is started (or restarted) it will scan all directories in the Virtual File System path and
create an internal list of all directories and files. This list will be modified if users make changes to the file system,
but not if files are created, deleted or moved from Windows (or DOS). If you make changes to the directories, make
sure to restart the Virtual File System so that the user gets the directory listings correct.

Note that all users share the same internal file list. If a user logs off and the on again, the Virtual File system will not
change. Also, taking the server offline and online again does not restart the Virtual file System. When it is running
you must manually execute this command if you want to refresh the internal lists.

If a user is accessing the Virtual File System (i.e. creating a .SysIdx.txt file), when you restart it, a new list will be
built for all future access. The old list will be trashed when the user end's the current operation. (In this example -
the next directory listing or .SysIdx.txt file will use the newly created Virtual File System list.).

If there are many files in the Virtual File System path, the scanning of directories can take some time. The server will
suspend all other operation and show a busy cursor until it is done. If you include CD ROM drives in the path you
can expect this process to take several minutes.

See also: Virtual File System. and Virtual File System Options

View the Virtual File System

Toolbar:
Menu: Properties/Vfsys

From this dialog you can examine and alter the Virtual File System and it's files.

Permissions

The permission are standard UNIX file permissions, divided into User, Class (in real UNIX it is called
Group) and All (In real UNIX it is called Other).

When the Virtual File System checks the access permissions to a file or directory, it first check the "All"
permissions. If that fails, it checks whether or not the user is a member of the owner class. If he is, it checks
the permissions on the class. If the user still not has access, it checks if the user is the owner of the file, and
again looks at the permissions.

Note: Users in the Sysadmin class has the same rights as the UNIX "root" user. They override the
permissions and gets full access.

Read. Read permission to files and list permission to directories.

Write. Write/delete permission to files and write/create/mkdir/rmdir permissions if set on a directory.

Exec. Execute permission (a user can execute a .bat or .exe file via the SITE EXEC command) (- not yet
implemented) if set on a file. On directories the Exec permission determines if the user has any access to
the contents of the directory. If not set, the user will not be able to access any files or directory in the path
in or below that directory.

Belongs to User

The owner of the file.

Belongs to Class

The class the file belong to (owner class).

Special attributes

Dupe Exception. Filenames with this flag set can be uploaded even if the dupe checker is active.

Free Download. Files with this flag set can be downloaded without affecting the users download
restrictions. Such files will neither be added to the users download counter or to the users download
statistics.

Comment

The comment field let you see and alter the comment of a file. The comment will show up in the .Index.txt
and .SysIdx.txt files.

DOS Path

This filed shows the physical location of the file. It is for your information only.

See also: Virtual File System. and Virtual File System Options

Flush the Virtual File System

Menu: Properties/Vfsys

The Virtual File System maintains information about your files, like who that uploaded a file, how many times a file
is downloaded, file comments and UNIX permissions. When changes are made it remember the change. Since this
information not can be stored in the physical file system together with the filename, date etc., it will write it's own
information in each directory that contain files with extra properties (files with comments, files that are uploaded or
downloaded etc.). The filename it write this information to is named .Index.txt, but is not the same file that the user
is presented for. In fact, the real .Index.txt that exist on the disk has the DOS/NT hidden flags et and will not show
up in any directory listings.

If changes are made, the Virtual File System will flush the updated information to disk every 7. minute. It will also
flush the information whenever it is stopped, and when the server shuts down.

The Flush command is provided to let you force an immediate flush. This can be useful if you work on utilities that
will read or modify the physical .Index.txt files.

See also: Virtual File System. and Virtual File System Options

Start Service (go online)

Toolbar:
Menu: Properties

War FTP Daemon can operate in online and offline mode. When online, it will "listen" for incoming connections,
and accept logins if no security parameters denies it. This is the normal mode of operation.

Stop Service (go offline)

Toolbar:
Menu: Properties

War FTP Daemon can operate in online and offline mode. When online, it will "listen" for incoming connections,
and accept logins if no security parameters denies it. This is the normal mode of operation.

However, sometimes it can be useful to have the server running while it is offline. This mode of operation is first of
all used for maintenance and configuration.

Note: The server will not shut down if you take it offline. The program will run, but it will disconnect from the
network and not provide any services for incoming calls. Depending on the shutdown options it will either ask, or
just break the connection and disconnect all current users.

Options Tab

Toolbar:
Menu: Properties/Options

The Options tab is where you configure the system wide settings for your FTP service

General Options
File System Options
Virtual File System Options
SITE commands
FTP Options
Server Name
System Priority
Sounds
Upload Verification
Log
NT

General Options

Startup Options

Go Online when started. If checked, the server will go online when it is started and wait for incoming
connections.

... and minimize. If checked, the server will minimize itself. On Win95/NT4 systems it will disappear and
only be available from the system tray.

Protect the console with root account password. If checked the system will ask for a "root account"
password whenever you try to restore the window. In order to access the server console you will have to
type in a user that belongs to the "Sysadmin" class and his password. If you don't have any users in this
class, you will have to shut down the server from the system tray icon. Then edit the "FtpDaemon.ini" file
and set the following value: Protect Console=0

Show welcome dialog. If checked, the welcome screen with copyright information will show up when the
server starts up.

Shutdown Options

Prompt for... If checked, the system will ask for confirmation whenever you tell it to go offline or
shutdown if there are users online. Note: If you use the SITE SHUTDOWN command, the server will shut
down without checking this option.

How Do You Want it?

Simple. The server will operate as usual, but will hide most of the advanced (and maybe confusing)
options. This mode is designed for users with small FTP sites that don't need all the advanced options. The
mode only affect the security tab's.

Advanced. The server will enable all options and provide maximum power and flexibility.

File System Options

Directory message filename

When the user issues a CD command and goes to a new directory, the server can answer with a little
message about what he can expect to find in that directory. This is common practice on a large number of
FTP sites, and most modern Windows FTP clients will understand the message and display it to the user in
a separate window.

In order to enable this feature, create a file with the same name as the file in this box in each directory
where you want these messages to appear. The server will see the file when the user changes to that
directory and display the file. If you don't want these files to show up in the directory listings; set the
DOS/NTFS hidden flag on the file.

There is also an option in the View/Messages dialog to set a default text to show if there is no directory
message in the directory the user changes to.

User File System

This mode determines how the server will show file paths to the FTP user. Many DOS users will expect to
see typical C:\whatever style paths, and feel familiar if the server use these. The problem is that many FTP
clients and WEB browsers will be confused by this and misbehave. Therefore the server supports both DOS
and more traditional UNIX paths.

Example on DOS paths

C:\
C:\FTP
C:\WINDOWS

Example on UNIX paths

/C
/C/ftp
/C/windows

The mode will only affect the output. The server will accept both DOS and UNIX paths from the user. He
can even mix the paths, so something like: /C/windows\temp or C:\windows/temp are both valid
paths.

If the Virtual File System is running the C:\ part falls out. The virtual file system don't use drives, as all the
paths are put together in one hierarchy. The output will only differ in the use of slash (/) or backslash (\).

Note about DOS paths: The \ path will (if the user has \ as root-path) go to a logical directory behind the
drives and list the drives on a directory listing

CD \
LIST

C:
D:
E:

Note about UNIX paths: Real UNIX paths on real UNIX systems are case sensitive. The file MyFile.txt
and myfile.txt are regarded as two different names. The War FTP Daemon permits case insensitive
filenames, and will treat MyFile.txt and myfile.txt as the same file.

Copy files from CD-ROM

CD-ROM's are getting more and more used on FTP sites. On a 'normal' FTP server, a CD-ROM drive will
slow down file IO, the speed of directory listings. If you use a CD-ROM jukebox things will be even worse.
Fortunately, the War FTP Daemon address this.

In order to have the same speed on directory listings on a CD-ROM or CD-Jukebox, use the Virtual File
System. That way the contents of the CD-ROM is kept in RAM by the server, and a user can browse around
without any physical access to the drive.

In order to gain the same speed on downloads from a CD-ROM as from a hard disks, enable the 'Copy to
path' option, and specify a path that is inaccessible for the FTP users, and has free space to store large
temporary files. When this option is enabled, all files that is to be downloaded from a CD-ROM (or
network drive) is copied to the temporary path before the transfer start. If two users request the same file at
the same time, it will be copied twice. When the transfer is done (or aborted), the temporary file is deleted.

The server use a dedicated thread for the copying. This means that all operations on the FTP site will
continue at full speed, while a file is being copied. It also guarantees that only one file is copied from a CD-
ROM drive (or jukebox) at the time - giving the best overall performance.

Note: If a copy operation fails, the file will be transmitted directly from the CD-ROM. This fallback feature
ensures that users will get their files, even if you run out of temporary storage space on the harddisk.

How To Display Links

War FTP Daemon emulates standard UNIX FTP servers. The directory listings are in the same format as the
UNIX ls command would have given.

In UNIX links are displayed like LinkName -> RealName, with the 'l' flag set. This can confuse many
FTP clients, since there is now way to know if the name represents a file or a directory. The UNIX ls
command has an option (-L) that will display the link as if it were a normal file or directory. The server
supports this option, but many FTP clients don't use it.

To overcome these problems, you can set the -L option as default, forcing the deamon to output any link as
if it were a normal file. This option is by default turned on.

Diskspace

This option will deny upload if the available free diskspace on the target partition/drive is less than the
KB’s defined.

Multitreading ls

“Ls” refers to the UNIX command ls (list structure). This is because War use the ls output format and
command syntax for the LIST command.

Unlike most other Windows FTP servers, War will not stop the processing of ongoing file transfers to wait
for slow IO calls in order to generate a directory listing. In stead it will pass the LIST command to another
thread and continue to process basic FTP operations. You can specify the maximum number of threads that
will be created for this function. Currently there is a limit of 5 threads. This is sufficient to server several
hundred FTP users under normal conditions. A LIST command will typically complete in less than 1/5
second - but sometimes it can take longer. If users LIST CD-ROM drives, or perform recursive listings of a
large number of files/directories, the processing can take several minutes (works case).

War has logic to pass new LIST commands to idle threads, or to the tread that will most likely finish the
current task first.

If the listing is huge, the processing of a directory listing can not only be slow, but also take quite some
CPU time. Under NT the overall performance of the server will be better if the priority of the ls threads are
decreased when this happen. The Mixed Priority option will decrease the priority when War is processing
data or waiting for slow IO, and increase when it access shared memory in the Virtual File System or the
User database. Windows 95 has a considerable overhead when a process change priority, so this mixed
priority will typically make it perform 100 - 1000 times slower than the static option. If you select
“Optimal” War will choose the optimal setting based on the current environment.

If you don’t know what “threads” and “priority” are, just press the NT or Win95 button and let War decide
the best settings for your machine.

Virtual File System Options

Auto Start/Restart option. If you use the Virtual File System you will usually want the server to start it
automatically. You can have War start it, and also re-scan the physical file system at regular intervals to update the
information in case files are added/deleted by other applications. The rescanning will only take place when no FTP
users have open handles to the virtual file system.

Virtual File System Path. This is the path(s) that the virtual file system will cover. When running the Virtual File
System, only files inside the path's defined here will be available.

The formal path definition is as follows: X:\path[path][,pseudo-name][;new path definition]

Let's have some examples. You have a D: drive that you want to use for your FTP service. All files on this
drive shall be available to all (or some of) the users of your site.

D:\,ftp

The path above will include all files on your D: drive in the Virtual File System, and give the user a root
catalog with one directory, /ftp. Your D: drive is now mapped to /ftp.

The reason that paths should be mapped is that the Virtual File System not can resolve the root (/) path to
any DOS paths. It can resolve all the files or directories in the root directory, but can not create any new
files here (except links). The servers root path is therefore always read-only. If you create a pseudo-name
for your drive (or path), that entry can be resolved to a DOS destination, and write permission is available.

Another example. You have some directories spread over your physical drives that you want to share with
your users.

C:\FTP\USERS,usr;C:\TEMP,tmp;D:\MISC\INCOMING,incoming;E:\MISC,pub

The path above will create the following directory listing in the root directory:

/incoming
/pub
/tmp
/usr

Important: You can NOT define the same physical path more than one time. C:\,c_drive;C:\
WINDOWS,win is an example on an illegal Virtual File System path. The Windows directory are defined
twice. The server will currently not detect such errors, but might crash or misbehave. It is your
responsibility to make sure that no directories are defined more than one time. If you want a directory to
show up several times, use links.

Note that all files and directories below the DOS paths given in the Virtual File System Path will be

included.

Disable the .Index.txt and .SysIdx.txt files. This option will make these files unavailable.

Disable recursive directory listings.

The directory listings generated by the War FTP Daemon are in UNIX ls format. In fact, the server will
emulate most of the options to the UNIX ls command also. One of these options are -R. If a user issues a
LIST -R or LS -R command to his FTP client, War FTP Daemon will generate a recursive listing of all
directories and files, starting in the current directory.

Some FTP mirroring software depend on this feature in order to get a full lusting of all the files on a site.
However, scanning thousands of files takes time and memory, and if a lot of users are issuing this command
the performance of your server will drop. The output from a large FTP site can be several megabytes.

If you don't want to spend CPU time and memory on this, don't need the .Index.txt and .SysIdx.txt files and
don't need to support FTP mirroring software, - you can turn this option off.

This option can not be turned off if unless the .Index.txt and .SysIdx.txt files are disabled.

Disable output of download count...

When the virtual file system is running it will maintain a download counter on each file it knows about
(that resides in directories with DOS write access - CD-ROM's can not use this benefit). It will output this
counter as the first statement in the comment of each file in the .SysIdx.txt file if this option is enabled.

This option is only relevant if the .Index.txt and .SysIdx.txt files are enabled.

Map space...

When the FTP protocol was designed, space was generally not used in filenames. The protocol can handle
it, but many FTP clients and WEB browsers will be confused and misbehave. In order to avoid this, you can
map all spaces in filenames to underscore.

Example:

Program files will map to Program_files.

See also: Virtual File System.

SITE commands

The FTP protocol defines all valid commands a FTP user can send to the server. Some servers however has extra
services to offer. This is done via the SITE command. SITE commands are system specific, and not compatible from
server to server.

War FTP Daemon offers some useful commands to the user this way, and also a high level of security. Only users in
classes defined in the SITE commands tab are allowed to execute the commands. The permissions are granted on a
per-command level.

Security
In order to allow or disallow the users in a user-class access to a command, simply click on the command
and then move the class name from or to the Authorized box. If you move the [all] tag to the Authorized
box, all users will get access to the command.

Supported commands

MSG <any message>
Sends a message to the console

CHOWN <user name> <file or pattern
Changes the owner of a file/files

CHMOD <octal mode> <file or pattern>
Changes the permissions of a file/files

CHGRP <class> <pattern or file>
Changes the group (class) of a file/files

WHO
Lists the users online

MSGU <user handle> <any message>
Sends a message to a user

SHUTDOWN
Shuts the system down

DISABLE <USER | GROUP | CLASS> <account name>
Disables an account

ENABLE <USER | GROUP | CLASS> <account name>
Enables an account

KICK <user handle>
Throw a user off

CLOSE
Close the system for everyone but system operators

OPEN
Open the system for general access

ANON <ALLOW | DENY>
Allow or deny anonymous access

Examples
From the FTP client supplied with Win95 and NT

QUOTE SITE MSG hi there, how is things?

This command will send the message "how is things?" to the Messages from the Users window on
the system console.
The "QUOTE" command tells the FTP client to pass the rest of the line to the server. The "SITE"
command tells the server to interpret the next word as a command.

QUOTE SITE SHUTDOWN

This command shuts the system down.

QUOTE SITE WHO

This command returns a list of the users online. The leftmost filed in the listing is a handle number
for the connection. You can use this handle number to kick users off the system.

QUOTE SITE KICK 23

This command kick user #23 off the system. He will be disconnected at once, and any file transfer
in will be aborted. Note that the number is the user handle, as return by the WHO command.

For other FTP clients, please refer to their documentation or help file.

FTP Options

Response to the SYST inquiry

SYST is one of the commands defined in the FTP specifications. The response shall be an operating system
identification code as defined in RFC943 (or the replacement of this document), section "Assigned
Numbers". FTP clients and WEB browsers use this command to determine the format of the paths and
directory listings they can expect.

War FTP Daemon is a Win95/NT application, and the formal correct response is WIN32. However, only a
few FTP clients will accept this response, and then recognize the UNIX style directory listings. Netscape
Navigator 2.1 goes gaga if the server answer it's real operating system. Therefore the server has the option
(enabled by default) to identify itself as a UNIX system.

User login

War FTP Daemon can perform a “reverse DNS lookup” when users log on. This will bring the users IP
name up when you spy on the user.

Some UNIX FTP servers will deny login from users if the reverse DNS lookup fails. Currently War does
not support this restriction, as it does not give any kind of protection or security. Also, sometimes the
lookup will fail on computers that have a valid DNS name.

The implementation of the Reverse DNS lookup in war is asynchronous. The user can log in and use the
server while War is waiting for the DNS servers to resolve the name.

If War is unstable, you might turn this option off as it has been suggested that it might be the cause of
some problems on some computers. The reverse DNS lookup has no meaning for the server itself. It’s just a
“fancy” feature that has been requested by a huge number of War FTP Daemon users.

FTP Data options
Deny write on a file opened for FTP send will place a lock on the file, preventing other applications from
writing to the file until the transfer is completed.

Fool my brain dead ISP will prevent the server from binding the data socket to the local port 20. This will
make some problems if the server is located behind a firewall that allow FTP access, but it will fool the
filters brain dead ISP's use to stop customers from setting up FTP servers. If you are unfortunate enough to
have such an ISP the best is to cancel your account and get a new account with a more friendly company. If
you are stuck with your ISP, you can enable this option and specify another port on the servers main
console (port 2121 is usually a good choice).

Server Name

War FTP Daemon supports macros in all messages sent to the user, including welcome messages, directory change
messages etc. In order to make it easy to change manifests such as site name and email address of the system
operator, you can define this here.

Name of your server. Maps to macro: [$systemname]

Email... Maps to macro [$email]

Limit access…

This option is usually used with multimomed (virtual) servers. If this field is in use, the server will only
"listen" to the specified IP number. If this filed is blank, the server will listen to all IP numbers known by
Winsock.

Note: If you don't know what multihoming is, leave this field blank.

System priority

Realtime. The highest possible priority. The threads of a real-time priority class process preempt the threads of all
other processes, including operating system processes performing important tasks. For example, a real-time process
that executes for more than a very brief interval can cause disk caches not to flush or cause the mouse to be
unresponsive.

High. Indicates a process that performs time-critical tasks that must be executed immediately for it to run correctly.
The threads of a high-priority class process preempt the threads of normal or idle priority class processes. An
example is Windows Task List, which must respond quickly when called by the user, regardless of the load on the
operating system. Use extreme care when using the high-priority class, because a high-priority class CPU-bound
application can use nearly all available cycles.

Normal. Indicates a normal process with no special scheduling needs.

Low. Indicates a process whose threads run only when the system is idle and are preempted by the threads of any
process running in a higher priority class. An example is a screen saver.

The default priority is Normal.

Note: Changes to the priority will not take effect before the server is restated. Just going offline and online will not
affect the priority. The server sets the priority when it starts up. The reason for this is to ensure that all the threads
gets the same priority.

Sounds

War FTP Daemon can play sounds when some events occur. It can be especially useful to play a sound to notify that
user messages has arrived.

Note: On some systems the sound feature can cause the system to crash when the server tries to play a sound. In
general it seems to work fine on Win95 and NT4.0 (provided that the server runs as a user application and not as a
system service).

The supplied .wav files is copyright Joe DeShon and is not in public domain! They might be used and distributed
with this software. Any other distribution is denied unless otherwise agreed by Joe DeShon. Check out
http://www.sky.net/~jdeshon/joewav.html for details.

Upload Verification

One interesting feature of UNIX FTP servers, that are rarely found on the Windows platform, is the capability of
verifying or processing incoming files after the upload is complete.

War FTP Daemon has this option. When a file is uploaded it checks to see if the filename matches one of the
patterns to any of the Script names defined in the Upload Verification tab. If a match is found, the script is started,
and based on the Exit value of that script, the server determines if the upload will be accepted or not.

This feature can be used to perform CRC checks, virus scan, or general processing, like extracting file_id.diz from
an archive.

When a script is started the user that uploaded the file will have to wait for the result from the script processing. Any
other users will continue theirs tasks as normal.

Script Name

The script name is the name of an executable DOS or Windows program. If you start a Windows program
to process a script, make sure that it supports running and processing the line arguments without any user
input.

When the script (program) is started, it's current directory is set to the directory where the incoming file
was uploaded.

File Patterns

You can specify one or several patterns to look for. The pattern applies for the actual DOS name of the file,
including the full path.

If you want to do something with all incoming .zip files, simply enter *.zip
If you will be processing several file types by one script, you can enter more patterns, each on their own
line.

Command line Arguments

The script will be started with the command line arguments specified here. You will normally pass over the
name of the uploaded file and some line switches to tell the script how to process the file.

If you use UnZip.exe to CRC check incoming zip files, the argument will be:

-tqq $f

-tqq is command line options for UnZip.exe and instruct it to test (not extract) the archive in quiet mode.
$f is a special macro that represent the uploaded file name

The following macros are available:

$f Filename
$u User name
$p File name, including the full DOS path
$d Directory name where the file is uploaded
$g Group name of the user
$c Class name of the user
$$ Just a single $

Exit Status

When a program finishes processing and terminates, it returns a status value to the operating system. In
DOS .bat files this value is represented by "errorlevel". When the server starts a script, it monitors its
processing, and receives the exit status when the program terminates. This value is used by the server to
verify the upload.

Any well written file verification program will return well documented values. The usual approach is to
return 0 if everything went OK, and a negative or positive value to identify problems or errors. The server
does not mind what that went wring, all it is concerned about is if the file was OK.

You can specify a return value to check for, and assign it to one of the following rules to accept the upload.

Equals to
Not
Less than
Greather than
Ignore

If you specify Ignore, the server will start the script and accept the upload regardless of the Exit Status.
This mode is added to allow processing of incoming files without any verification. I.e. If you are waiting
for some file to be uploaded, you can call wSendmail and notify yourself or others via email about the file.

Action when failed

If the verification fails, the server can either delete the file, or move it to a special directory for manual
verification at a later time. If you choose Move and the file already exist in the thrash directory, the file will
be renamed in stead of moved.

Trash directory

A DOS path to a directory to place files that failed verification. This property is shared among all the
scripts.

Display mode and timeout

The display mode determines how the server will start the script.

Hide (The default mode)
Minimize
Normal
Normal/Focus

The timeout tells the server how long it will allow the script to run before it is terminated by the server.
Since these scripts are used to process incoming files, and the FTP user will be held until the script
terminates, they can not run for too long. If a script runs more than 20 seconds, it is typically because it
want input from the user. In such cases the server simply regards the script as unreliable, terminate it when
the timeout has expired and accept the upload.

Note: The timeout value only tells the maximum time a script is allowed run. When a script terminate
normally, the server immediately suspends the held state of the user and either accept or deny the upload.

Note: There are written several scripts and programs by War FTP Users that use this feature. Some of these utilities
are released as Freeware and is available from http://www.jgaa.com

Log Options

This dialog allow you to filter the log messages you want to see. If you specify a log filename, the log will be
written to disk. If not, the log will only appear in the log window on the system console.

System Log Filter

Login/Logout. All events regarding logins and logouts.

File Access. Files uploaded, downloaded, deleted, renamed. Also directories that are created or removed.

Security messages. Users that are denied access, bad passwords etc.

System Warnings. Non-critical error situations in the different modules of the server.

Error messages. Critical error situations.

Debug messages. Generates a huge number of log output. Used to trace problems in the server or FTP
clients.

Log Files

War: A filename where the server can store the log. This file is flushed and closed each second, so that
other programs can view the file.

Note: If the server fails to open the file, the log events in the output queue will be trashed and only appear
on the console.

Wu-ftpd: This is an optional log file that will log all successful file transfers in the same format as the
popular wu-ftpd UNIX daemon. This log format is easier to parse in order to generate reports from the log
files.

Log file name macros
The log file names can contain macros. This is convenient if you want to start on a new log file each day.
The valid log file macros are:

%a      Abbreviated weekday name
%A      Full weekday name

%b      Abbreviated month name
%B      Full month name
%d      Day of month as decimal number (01 – 31)
%H      Hour in 24-hour format (00 – 23)
%I      Hour in 12-hour format (01 – 12)
%j      Day of year as decimal number (001 – 366)
%m      Month as decimal number (01 – 12)
%M      Minute as decimal number (00 – 59)
%p      Current locale’s A.M./P.M. indicator for 12-hour clock
%S      Second as decimal number (00 – 59)
%U      Week of year as decimal number, with Sunday as first day of week (00 – 51)
%w      Weekday as decimal number (0 – 6; Sunday is 0)
%W      Week of year as decimal number, with Monday as first day of week (00 – 51)
%y      Year without century, as decimal number (00 – 99)
%Y      Year with century, as decimal number
%z, %Z      Time-zone name or abbreviation; no characters if time zone is unknown
%%      Percent sign

Log Lines

The number of lines that will be stored in the Log Window on the system console. When the log exceeds
this number the oldest line will be removed.

The default number is 50.

This option only appear for the screen. The log files will be written to any length.

Note: If the number of lines is larger than the window can handle, the output on the console can look
corrupt. If this happens, decrease the number of log lines.

Log all data xmitted over the control channel.

If a filename is specified here the server will dump all data sent or received over the FTP control
connection to that file. This is usually only done when tracing problems in the server or FTP clients.

Log all data xmitted over the data channel.

If a filename is specified here the server will dump all data sent over all active FTP data connections (a
copy of all file transfers). This option should be used with caution, as the file will grow huge. Also, if
several users are online when this option is enabled, the data dumped will contain a little from one
transmission and a little from another transmission, and make very little sense.

NT Options
This chapter does only apply to the server when running under Windows NT

Overview of a NT service

When Microsoft designed Windows NT, they decided to implement a special runtime-mode for programs
that provided services to the machine/network, rather than services to a single user. They invented the NT
Service API that allows a program to be started when NT starts up, and lives more or less as part of NT
itself, independent of users that might log on and off the machine. All disk drivers, printer drivers,
Network drivers, RAS etc. etc. runs as NT services.

A NT service is not supposed to interact directly with the user. Normally you will configure a service from
an applet in the control panel.

War FTP Daemon as a NT service

War FTP daemon has native support to run as a NT service. When it is configures to run as a service, it will
normally start when NT boots, and remain running until NT is shut down. All resources used by War is
released when it stops (I mention this since some NT services does not free memory and dll’s they have
used).

Unlike most NT services War was designed as a true Win32 program, using MFC, message maps and
asynchronous operations. This makes war run very fast, using few threads and limited resources.
However, it needs some windows for message passing between the submodules. The NT Service
implementation was never design for this kind of programs. A typical NT service is a 32 bit console
application with no windows and no message pump, using only low-level API calls. The modern design of
War have therefore caused a few problems when running as a service. See the release notes for a list of
known problems, and how to avoid/handle them.

Service startup options

This is basically the same options that you will find in the “startup..” dialog in the Service applet in the
control panel.

Note: If War is configured to run as a service, it will take about 30 seconds to start up when you start the
program manually as a normal program. This is because it first checks with NT if it is supposed to run as a
service or as a normal program.

If you want to use another account than the local “Administrator”, the following rules apply:

· The user account must have “login as a service” permission.
· The user account must have “Administrator” rights. I don’t know why, but the service will

freeze if it don’t have these rights. I have not been able to communicate with the program at all
when testing this. War fails to output status information to files or even to start the debugger
from the DebugBreak() call.

· The user ID must be given as machinename\userid, ie. “lanstation\warftp”
· The password must be given if you specify a user.
· If you use an account for the service, this should be a dedicated user account, and not the

account of one of the regular users on the network/machine.
· You must create an NT user account for War and start it with this account if you want to use

the automatically mounting of network drives option.

Note: You must press the button in order to activate the new Service options. If an error occurs
you will be noticed.

Interactive option

There are two ways to configure War when it runs as a NT service. The recommended method is to

1. Stop the service from the Control Panel
2. Start the program as a normal application
3. Do the configurations
4. Exit the program
5. Restart as a service from the Control Panel

The other method is to enable the “Interactive mode”. This will allow you to issue a SITE SHOW
command from a FTP client. When this command is received War will open it’s usual GUI as a normal
window, and you can access everything but the NT tab in Options. When you are done you minimize the
window to make it disappear.

Note: This option is convenient, but it has one huge drawback. There is a bug in MFC that will make War
crash when you log off or reboot NT. It seems like NT will close/destroy an internal hidden window created
by MFC to communicate with the CAsyncSocket() class. There is no known work-around for this problem.
It only happen when the Interactive option is enabled. You can use the Interactive option if you want War to
start when NT boots, but you must manually shut War down before you log off NT or reboot the machine.

LAN network drives

Since War will start when no users is logged on in service mode, it has the capability to mount one or
several network drives. This is useful if the FTP users are supposed to access files on the local network
(LAN). War use generic functions that should be able to access both Novell and NT shares. It will not be
able to access shares that have password security. When the shares are mounted it will try to log on to the
drive as the specified user with the given password.

You should not use a drive letter that any users will try to assign to network shares when they log on. This
is because the Drive Letter and the share will be mounted as if it was a physical disk drive on the machine.
All users logging on to the NT machine will be able to access the drive as if it was a local drive, with the
permissions of the user specified in the dialog above. This is a security hole you should be aware of.

Note: This feature will only be reliable if you start War as a dedicated NT user as stated above.

The Virtual File System

Introduction

The War FTP Daemon can optionally read the directory trees from one or several drives or paths into
memory, and use it’s internal copy of the directory structure in stead of accessing the physical disk
whenever it needs to check a pathname or make a directory or file listing. On a system with many users
online, this feature will give a significant performance improvement. The virtual file system should be used
on any static download service. (Files uploaded, renamed and deleted by online users will be handled, files
copied from the operating system will not be found until the virtual file system is restarted).

With the virtual file system you also have the opportunity to design your own custom file system layout,
that can contain directories and drives (including network drives), to make it easy for the users to find the
files they are looking for. Drives and directories not included in the virtual file system will be 100% secure,
as the server wont even try to look them up.

The virtual file system is a partial implementation of a UNIX file system that is mounted between the
physical file system (FAT, HPFS, NTFS) and the FTP file IO functions. You don't need to run the virtual
file system. For most sites it will only take up computer memory and add more complexity to the site
administration. But for advanced FTP site administrators it will give more power and flexibility than any
other FTP server running under Windows.

FTP security and path mapping
|

Virtual File System: UNIX security and links, dupe checker and free download checker.
|

DOS/HPFS/NTFS

Please note that when you use the Virtual File System; both UNIX and the FTP security functions are used.
In other words; - the user must have both UNIX and FTP permissions in order to access a file or directory.
See the graphical layout of the File Security

The View Virtual File System dialog will allow you to modify the file/directory permissions. If you don't
have a working knowledge on UNIX - don't play with the rwx flags! Use the right mouse button to create
links, or simply add shortcuts with the Win95/NT4 explorer. Shortcuts to files that exist within the Virtual
File System are automatically converted to UNIX links when the Virtual File System starts up, and the .lnk
extension removed. (The original shortcut files are left untouched on the disk but are invisible to the FTP
user).

UNIX commands

Stripped versions of the following UNIX commands are available trough the SITE command:

chmod CHMOD mode FilePattern
The mode is the octal UNIX file permissions.

chown CHOWN NewOwner FilePattern

chgrp CHGRP NewGroup FilePattern
The UNIX group name is equivalent to the FTP class name. Users in the class Sysadmin
has UNIX root user privileges.

File Pattern can be a file name or a pattern.

See also Virtual File System - Restart, Stop, View, Flush and Options.

Chmod (SITE command)

chmod mode file or pattern

Description

 The chmod utility modifies the file mode bits of the targeted files as specified by the mode operand.

Modes

 Modes must be absolute. An absolute mode is an octal number constructed by or-ing the following values:

 0400 read by owner
 0200 write by owner
 0100 execute (or search for directories) by owner
 0070 read, write, execute/search by group
 0007 read, write, execute/search by others

 The read, write, and execute/search values for group and others are encoded as described for owner.

Example
QUOTE SITE CHMOD 744 *.EXE
QUOTE SITE CHMOD 700 MYFILE.TXT
QUOTE SITE CHOWN JGAA *.TXT

Security tab

Toolbar:
Menu: Properties/Security/*

The security tab is used to edit user, group, class and the default system configuration. Some commands, such as the
Properties/Security/Edit User, Group, Class and default menu items, will cause the server to hide the other tab's on
the left side of the screen. Also, if you use the simplified mode of operation, most of the right side tabs and many of
the options will disappear.

The User tab
Adding and deleting users
Password
Up and Download restrictions
Up and Download counters
Idle time and max simultaneous logins
Login counter and the fail limit
Directory access permissions
Real name and memo
Greeting message
Banned files and the dupe checker
IP access restrictions

IP Access Restrictions

Dialog: Security tab Banned Files

Most people are nice. Some are not. If you know the IP number of some people you don't want on your system, you
can mask them out.

Masks to DENY

Any IP address or IP mask defined here will be denied access, unless it is listed in the ALLOW list. If you
want to restrict access for system administrators to the machines they use, you simply deny access for all
addresses in this field.

Masks to ALLOW

Here you list exceptions from the deny list. If a IP address is denied, the system looks in the ALLOW list
for an exception.

When the system checks the IP access lists, it first scans all 4 levels for a mask matching the calling users IP
address. If it turns out that the user IP is denied (at any level), it scans the ALLOW lists at all 4 levels. If an
exception is found (at any level) the user is allowed access.

How it works

The scanning takes place after the user has given his password (or after the password check is skipped if the
user don't need a password), unless the option is checked on the default level. In this case the
server will deny any IP number banned at the default level by simply closing the connection. If the user
makes it trough this first test, the user, group and class levels will be checked after he has given his
password.

Adding a new rule

To add an new rule, enter the IP address (or mask) in the Rule field. When the Rule qualifies as a valid IP
address or mask, the Add button will be enabled. Press the Add button to add the new rule.

An IP number consist of four numbers 0 - 255, separated with '.'

127.0.0.1
127.34.56.230

A Mask can be any valid IP number. Each of the for numbers can be a number, a range or a star, specifying
range 0 - 255.

..*.* All IP numbers
127.*.*.* All ip numbers starting with 127.
127.0.0.1 The IP number 127.0.0.1
127.0.0.1-15 IP numbers in the range 127.0.0.1 - 127.0.0.15

Banned files and the dupe checker

Dialog: Security tab Banned Files

It is nice when kind people upload useful files to the server. But there might be some files you don't want, or some
many you have your files spread in a large number of directories and don't want the users to waste time and
bandwidth uploading duplicates.

The War FTP daemon has two ways to help you out.

Banned Files

If there are certain files you don't want, and you know the file names or can use some file pattern to identify
them, add the files to the banned files list. This list can be defined on all 4 levels. When a user want to
upload a file the server merges together a list of the banned files at all 4 levels (user, group, class, default)
and check the filename against this combined list.

Dupe Checker

The dupe checker is one of the real powerful features of this server. If you run the Virtual File System you
can enable the option. The server will then scan all the filenames in
the Virtual File System, and if a name exist, deny the upload.

If the Dupe Exception flag is set on the file, the file can be uploaded even if the dupe checker is active.

This option can be yes,
 no and
 default. If set to default, the server will look for a yes or no on a higher level. This permits you to enable/disable

the dupe checker on groups, classes or the entire user database, provided that the option is set to default on the levels
below.

Wanted Files (Dupe exceptions)

You can use the Dupe Exception flag to allow certain files to override the dupe checker, or you can specify
filenames or file patterns to be allowed in this list, even if they exist.

This list can be defined on all 4 levels. When a user want to upload a file the server merges together a list of
the wanted files at all 4 levels (user, group, class, default) and check the filename against this combined list.

Note: Banned files can not be overridden. If a file is identified as a banned file, the wanted list is not
checked. The wanted file list is only checked when the dupe checker is active, and only applies for files that
exist on the system and else would have been denied.

Greeting message

Dialog: Security tab Greeting

When the user has logged in, after the system welcome message has been displayed, you have the option to display a
personal welcome message to the user. This can be a static message, or you can set the delete when sent flag to only
display it once.

If messages are created on several levels (user, group, class, default), all the messages will be sent.

Real name and memo

Dialog: Security tab Personal

These properties are for your convenience only.

Directory access permissions

Dialog: Security tab File Access

The War FTP Daemon has a sophisticated Directory Access scheme. These properties can give a user access to or
deny him access to any directory on your system, or within the Virtual File System.

If you use the Virtual File System, these properties comes on top of the UNIX file permissions defined in the Virtual
File System. See the File Access Security table for a better understanding of the interaction between these properties
and the Virtual file System.

States of the attributes

Many of the file attributes can have three states; yes,
 no and
 default. If a file i.e. is requested for download, the server will perform the following test (when the up/download

checker, dupe checker and Virtual File System has all permitted the operation):

1. See it the user has read access to the files in that directory.
2. If the read attribute is set to default, check the users[default permissions] read attribute.
3. If that too is set to default, check the group's [default permissions] read attribute.
4. Move upwards until a yes or no is found.

This gives a great flexibility. You can change the default file attribute on a group, class or at the default
level, and affect thousand of files with one click. If you need to give special permissions to certain paths,
simply use the yes or no state on those paths.

If you kind of feel lost after a while and wander what permissions the users actually has on what
directories, use the report to get a full overview.

The paths

The War FTP Daemon will not give the user access to any file or directory unless paths are defined. The
first time the system is started it creates two paths on the default level:

1. \ Access to all files, with LIST only permission.

2. .\ The Server CWD with all access denied.

The first thing you should do when you start to add users is to delete the \ directory and set up your own
directory permissions.

Unlike the Virtual File System path, you can use overlapping paths here. You can set up C:\ with LIST only
permission, C:\pub with read permission and C:\pub\incoming with write only permission. In this case the
user will be able to see all the files on you C: drive (except the files in C.\pub\incoming), download
anything in the C.\pub hierarchy, except files in the C:\pub\incoming, where he only can upload files.

If you use the Virtual File System, the paths must use the Virtual File System path type (\path). Else you
must use DOS type paths (C:\). When you start the Virtual File System all paths will be transformed to
legal paths within the Virtual File System, or disabled. When you stop the Virtual file System all paths are
transformed back to DOS paths.

To add a path, simply press the button and use the browser to find the directory you want. You
can also type in an existing or unexistant path.

To delete a path, select the path you want to delete and press the button.

Attributes

Files

Read. Gives the user permission to download files in this path.

Write. Gives the user permission to upload files in this path. Note: Unless the Delete attribute is
given, the user will not be permitted to replace existent files.

Delete. Gives the user permission to delete or rewrite/append files in this path.

Execute. Gives the user permission to execute .bat and .exe files in this path (not yet
implemented). Note: This attribute has nothing in common with the Virtual File System UNIX
execute flag for directories.

Directories

List. Gives the user permission to list the contents of directories in this path.

Create. Gives the user permission to create directories in this path. This option will be disabled
unless the Recursive permission is set.

Remove. Gives the user permission to remove (delete) empty directories in the path. This option
will be disabled unless the Recursive permission is set.

Special

DENY. Denies the user access to do anything in this path.

Root. Specifies that this is the users root path. When the server needs to find the users root path, it
will scan the users file access paths and look for this flag. If no root dir is found, it will scan the
group, class and default levels. If no path is found it will fall back to use \ as root directory. If the \

path is undefined, or if the user does not have access to \, he will be denied access when he tries to
log in. Note: When you set this flag, any other root flag on another directory in the current list will
be cleared. A user will not be able to move to a directory at a level above his root. If C:\pub\ftp is
defined as root, the user will be denied access to C.\pub or anything else above C:\pub\ftp. See the
Root and Home dir for more information.

Home. Specifies the users home directory (the directory that will be the current one when he logs
in). The server resolves this in the same manner as it resolves the Root directory. See the Root and
Home dir for more information

Mapping. This flag has two meanings:

On root paths: Do not show the path down to the root path. If C:\pub\ftp is root, remove
"C.\pub\ftp" and replace it with \ (or /). Internally the server will of course use the full
path, but all paths transmitted between the server and the users FTP client will be
transformed.

Non root paths. Let the alias name of the path appear as a directory in the users root
path. This option makes it convenient to create a customized file system for the user.
Note: If you define a path outside the users root path, you must map it. If it is not mapped,
the user will not be able to see or access the path!

Recursive. This flag tells the server to let the permissions set on this path apply for all it's sub-
directories (all the way down). You will usually use this flag on all the paths you define. If not, the
permissions will only apply for the actual directory and not anywhere else.

Login counter and the fail limit

Dialog: Security tab History

Login counter

All successful logins are counted. This fields is provided for your information. If a user gives a bad
password, it will affect the failed login counters.

Fail Limit

You can specify a limit on how many bad login attempts you accept from an account.

Fail limit sequence. The number of times a user can give a bad password before the server closes the
account.

Fail limit total. The number of times a user can give a bad password before the user account is disabled. If
you want to enable a user account that is disabled due to this, you must unchecked the disable account
checkbox (or set it to undefined) and reset the total fail count to 0.

Idle time and Max simultaneous logins

Dialog: Security tab History

Idle time

The idle time is the time difference between the last request/data transmission to or from the user and the
current time. It is common practice for FTP servers to end sessions when the idle time becomes to big, in
order to serve more active users. In some cases the network connection can be lost without any TCP
notification, and in these cases the only way to clear the user handle is to wait for the idle time time-out.

You specify the idle time as a number of minutes. If you use 0, the server will look for a defined idle time
on a higher level. (If the user has idle time 0, and the class he belongs to has idle time 5 minutes, the user
will time out after 5 minutes).

Time Limit

The time limit is the total time an account is allowed to remain logged in to the system. When the time limit
is expired, the user will be logged out. If a file transfer is in progress, the logout will come right after the
transfer is completed.

You specify the time limit as a number of minutes. If you use 0, the server will look for a defined time limit
on a higher level. (If the user has idle time 0, and the class he belongs to has a time limit of 30 minutes, the
user will time out after 30 minutes).

Max simultaneous logins

Some users, like the anonymous account, is shared among many persons. You can limit the number of
simultaneous sessions for any account. If you leave this option to 0, the server will look for a defined limit
at a higher level. If no limit is defined at any level, 0 will be interpreted as unlimited.

Max simultaneous logins on IP

This option allows you to restrict the number of simultaneous logins an account can have on one IP number.
It is typically is used to restrict the sessions of anonymous users. You might allow 30 anonymous users,
but only 1 or 2 connections from the same physical user. If you leave this option to 0, the server will look
for a defined limit at a higher level. If no limit is defined at any level, 0 will be interpreted as unlimited.

The option above (Max simultaneous logins) take precedence over this one. So if you say 5 simultaneous
logins and 10 simultaneous logins on IP, only 5 simultaneous logins will be allowed.

Up/Download Restrictions

Dialog: Security tab Security

The Up/Download restriction feature is typically used on sites that want something back for the files they offer to
the public. If enabled, the user will have to upload # files or bytes in order to download # files or bytes. If he don't
give something, he don't get something either. In combination with the dupe checker this feature is very useful if you
collect some sort of files.

If you have the Virtual File System running, files with the Free Download flag can be downloaded regardless of the
modes described below.

Modes
No restriction. The option is disabled. This is how most FTP servers behave.

Session. The system compares the users upload/download counters for this session (since he logged on) and
decides if he can download without first uploading something. This is the recommended class for all
anonymous users on systems that require users to contribute before they get something back.

Normal. The system compares the users total upload/download counters to decide if he can download
without first uploading something. This class should normally not be used for anonymous user accounts.

Use default. The system looks at the next level for the Up/Download restrictions.

Ratio

Put n for each n [Files/Bytes] to download. This is the definition of the up/download ratio. You can say
upload 3 files/bytes for each 2 you get, or upload 1 file/byte for each 5 you get etc.

For simplicity, use small number. Do not say 100.000 bytes for each 200.000 bytes to download. Say 1 for
each 2 bytes. The server does not care about the actual numbers, it looks at the relation between them when
it decides if a user can download or not.

If you use Bytes as the rule, the server will look at the size of any requested file and deny download even if
the user has uploaded something. If a user uploads a file on 50 Kb and the ratio is set to 1 : 2, he can
download 100 Kb. If he request a file on 101 Kb, the request will be denied.

If you use Files as the rule, the server don't mind about the size. The user can upload a file of 1 KB and
download 2 files of unlimited size (if the ratio is 1 : 2).

Note: When the Up/Download restrictions are active, a user can not download anything (except free files) until he
has made an upload.

Up and Download Counters

Dialog: Security tab History

The War FTP Daemon remembers all regular file transfers. Both the number of files and the kilobytes transmitted
are saved. Free files, directory listings, .Index.txt and .SysIdx.txt are not counted. The upload and download
counters are used by the Up/Download restriction module.

Aborted transfers are counted in separate counters.

You can edit these numbers.

Note: The statistics information uses it's own counters and are not affected by changes in these properties.

The User tab

Dialog: Security tab

If you accessed the Security tab via the Edit All command, you can select the level you want to alter in this tab. Else,
you will only see one selection.

Enable or disable a user account

In order to enable or disable a user account, simply check or uncheck the checkbox. If
you want to do this on a higher level, leave the box grayed (as on the sample). If all the boxes on all
accounts are set to default (grayed), the checkbox on the system default properties can enable or disable all
the accounts. If the checkbox on the user level is either checked or unchecked, this will override any
settings on a highest layer for that user.

You can examine the access permissions by viewing the access report.

Adding and deleting users

To add a user, group or class, simply press the button. You will be asked for a user name and a
password for the new user. Select a name and a password, or cancel the password dialog if you want the
user account to use the email address as password.

If you add a group or a class, you will not be asked about password.

When you have added a new account, you can configure it, or leave it to use the default configuration. The default
configuration for a user is the properties for the group, class and the default system properties added together.

A new user will be initiated to use the "ftp" group and the class defined in the default system properties.

A new group will be initiated to use the class defined in the default system properties.

To make this a little clearer: Both the user, group and default level has the possibility to define a class they
belong to. If no class is defined on the user level, the user will be assigned to the class defined on the group
level. If the users-group don't have a class defined, the user will be assigned to the class defined on the

default level. The default level will always be assigned to a class. So either way of the other - the user will
always belong in a class. If you are uncertain about what users belong in which classes, you can press the

 button for a list of all the users and the groups and classes they belong in.

To delete a user, select the user you want to delete and press the button.

Note: You can not delete users, groups or classes created by the system. The system depends on being able to find
the "Anonymous" user, the "ftp" group and the "Sysadmin" and "Visitor" classes. If you select one of these accounts,
the delete button will be disabled.

Password

Dialog: Security tab Security

When a user is created he is either given a password, or (if you cancel the password dialog) will be asked to use his
email address as password. You can change the users password or password properties at any time.

Password properties

Disable password. If checked, the server will not ask for password at all, but just accept the user once the
user name is given. This can be useful for users that usually will come in via WEB browsers, as the
browsers usually will give a fake email-address anyway. If the server don't ask for password, the login is
faster, and the end-user more happy. Note: Users without passwords are regarded as anonymous users by
the properties entries on the System Console.

Change password. This will open a dialog where you have to enter the new password twice. If the two
passwords are equal, the new password is accepted. Users with real passwords are not regarded as
anonymous users by the System Console. When the user log in, he will have to give the correct password.
Note: Passwords in the War FTP Daemon are case insensitive.

Use Email Address. This is the common password mode for anonymous FTP sites. Many users will give
fake addresses, but if you have 10 users on the same account logged inn simultaneously, it is easier to
distinguish between them if they have individual email addresses. Even if they are fake.

Validate Email Address. This option is only significant if the option above is enabled. If enabled, the
server will have a brief look at the users email address and verify that the formal email address syntax is
correct. It will not take any action to verify if the email address exist. This option is first of all a way to
prevent people from just entering "test" or "dickhead" as password.

The password is hidden somewhere in the encrypted user database and can not be easily broken. The security is far
better than typical UNIX systems or other systems using the UNIX one-way encryption algorithm.

See also the Password Properties Report.

Access Report

Dialog: Security tab
Menu: View/Reports/User Access Privileges

The access report is a easy way to check the access (login) permissions for all the users on the system.

Sample report

User Group Class S U G C D =
--------------- --------------- --------------- - - - - - -
anonymous ftp Visitor N Y N
jgaa root Sysadmin Y
john ftp User N N N
smith ftp Guest Y Y
test ftp Guest N N Y N

Levels

S = System Console
U = User
G = user-group
C = User-class
D = Default

The SUGCD rows tells us about the permissions set on various levels, and the = row tells us if the user is allowed to
log in or not.

Let's look at the sample report

anonymous is denied at the System Console. is checked, and the server regards anyone
without a password (or with the email address as password) as anonymous. The System console settings
takes precedence over all other properties. So anonymous is denied access, even if he is allowed access on
the Class level.

jgaa has not gotten any account access properties on any level and is granted access. The system will allow access in
this situation.

john is denied on both class and System Console level and is denied access.

smith is allowed on the class level and is given access.

test is allowed on the class level, but denied at both System Console and User level and is denied access.

What you should avoid to do

Some system administrators sets the access properties on every box they can find. This is silly, as the design is made
to permit allow or denial of many users by permitting or denying their group or class. If your report look like the
sample below, you better read this chapter again and start to uncheck boxes :-)

User Group Class S U G C D =
--------------- --------------- --------------- - - - - - -
anonymous ftp Visitor N N N Y Y N
jgaa root Sysadmin Y N N N Y

john ftp User N Y Y N Y N

New users

If you create a new user and then execute the report before the system has updated the database, the line can look
somewhat suspect.

User Group Class S U G C D =
--------------- --------------- --------------- - - - - - -
new user [unassigned] [unassigned] - - - Y

This is however quite normal. At this point the report claims that the user can log in and that the user does not
belong in any group or class. The situation is that some internal tables are un-initialized, and the report generator is
unable to resolve the information. The login module on the other hand, will not be able to find a user before the user
database is updated and all the internal tables are updated. So this user will not be able to log in. Not yet.

If you press the update button the user account will be updated.

Users Home and Root dir Report

Dialog: Security tab
Menu: View/Reports/User Home And Root Dir
User Group Class Root dir. Home dir.
--------------- --------------- --------------- -------------------- --------------------
anonymous ftp Visitor \httpnt /httpnt
jgaa root Sysadmin \ /
john ftp User \ /
new user ftp Guest \ /
smith ftp Guest \ /
test ftp Guest \ /

This report simply lists all the users, the group and class they belong to, and their Root and Home directories.

If you new to know the permissions or at what level the root and home directories was defined, use the more verbose
User Path Report.

User Path Report

Dialog: Security tab
Menu: View/Reports/User Home And Root Dir

USERS AND THEIR ASSIGNED PATHS

anonymous
 RH[User] \httpnt : List Read Maps to rootdir + Applies for subdirs.
 [User] \cgi : List Read
 [Default] \ukjent : List Read
 [Default] \ : List Read
 [User] [default permissions] : List Read
jgaa
 H[User] \cgi : Create Delete Execute List Read Remove Write
 [Default] \ukjent : Create Delete Execute List Read Remove Write + Applies
for subdirs.
 R [User] \ : Create Delete Execute List Read Remove Write + Applies
for subdirs.
 [User] [default permissions] : Create Delete Execute List Read Remove Write + Applies
for subdirs.

john
 [Default] \ukjent : All access denied + Applies for subdirs.
 RH[Default] \ : List Read Write + Applies for subdirs.
 [User] [default permissions] : List Read Write

This report produce a list of all the users, and for each user, a list of all the paths defined in the Security tab's File
Access Permissions list. This report prints the mix of paths and permissions that the system actually use. The lists
are made up by the Path definitions on all levels (user, group, class and default), and their real attributes (when
attributes are resolved to the [default permissions] at a higher level).

The report tells at what level the path was defined and all the permissions on each path.

Password Properties Report

Menu: View/Reports/User Home And Root Dir

User Login class Password status
--------------- --------------- -------------------------
anonymous Anonymous Disabled
jgaa Administrator Password Required
john Anonymous Email
new user Normal Password Required
smith Normal Password Required
test Anonymous Email

Login classes

Anonymous. All users without password enabled.

Normal. All regular users.

Administrator. All users in the class 'Sysadmin'

The login classes only applies when the user is logging on.

Up/Download Statistics Report (10 on top)

Menu: View/Reports/Up Download Statistics

From this dialog you can create sophisticated reports from the statistics data maintained on each user by the server.

Creating a report

You can click on the option check and select-boxes, exclude users or groups of users and press the
 button to make an instant report.

If you will be running the same selections on a regular basis, you can give the report template a name and press the
 button.

There is no limit in the number of report templates you can create.

File Access Security

System Messages

Menu: View/Messages

The FTP specification states what commands the users FTP client can and shall send to the server, and how the
server shall respond. Therefore is all the messages that is sent from the server to the users FTP client in response to
different events hard-coded. However, in some cases it is useful to add some additional information. The War FTP
Daemon can of course do this.

Just select the event that you want to make a little more verbose and write your message. You can of course use
macros in all these messages.

Newline

The messages in the files are displayed via the standard [filename] macro. To allow a file to just contain a
single word, and to avoid empty lines in the standard messages, no newline is inserted before the contents
of the file. You will therefor normally begin your message with an empty line.

Altering the messages from other programs

All these messages are stored in textfiles in the Server CWD. You can modify these files from DOS .bat
files or external programs (like adding special notes on holidays, when the backup program starts up, or
have one message in the morning and another one in the afternoon).

The filename of the textfile is displayed at the left lower left corner of the dialog.

Macros

Menu: View/Messages
Dialog: System Messages

When sending data from the server to the user in response to a command, the server looks for and expands macros.

Syntax of a macro

The formal syntax of a macro is [$tag] or [filename.ext]

The tags are hard coded in the server. For a complete list of macros, run the Macros dialog. The macros
show up in a read-only text-window, allowing you to copy and paste the macros directly into where you
need them.

Your own static messages as macros

As stated above, the tags are hard coded.

To make your own macro perform the following steps:

1. Create a textfile in the Server CWD.
2. Type in the message
3. Use the filename for this file as a macro in a greeting message or system message.

File-include macros can be recursive. If you call [mym1.txt] from [mym2.txt] and [mym2.txt] from
[mym1.txt] the server will loop on this redundancy and hang until the user logs off. It is your responsibility
to make sure that such situations does not occur.

Example

"Hi [$user]. Welcome to [$systemname]! Here is the latest news :-) [news.txt]"

230- Hi Joe. Welcome to Jgaa's Fan Club's FTP service! Here is the latest news :-)
230- --------------------------
230- bla bla
230- --------------------------
230 User logged in. Proceed.

How to show square brackets

Sometimes you might want to use square brackets in your messages. If you prefix the [bracket with
backslash, the server will not try to expand a macro.

Hi \[well, this is just a test] whatever.

The] bracket can be used freely without any prefix.

Bug Reports

Menu: Help/Bug Report

The War FTP Daemon is probably the most flexible and powerful FTP Daemon available for Windows today. This is
great, but also has some disadvantages. As all advanced programs of this scale there are situations where the server
will misbehave - simply because it is impossible to implement so much complexity and flexibility and then test all
possible combinations of user setups, system setups, operating systems and patches, network cards and FTP clients.

Some problems can be present for a long period of time before someone come across a combination of settings and
environment parameters that will trigger it. Other problems can occur when new features are implemented.

Bugfixes has a high priority for the developer. If you come across any problems, please use the Bug Report Form
above and report it. If possible, supply detailed information about how the problem can be reproduced.

Thank you.

User List

The User List shows all the users currently online.

Rows

#. Handle number. This is a number that increments by one for each login from the server starts up. The
number is used to distinguish between sessions if a user account is logged in several times.

Login. The time the user logged on.

Name. The name of the user. If the user has the Email password class, the password he typed will show up
in square brackets.

State. The current state of the user.

Prelogin. The user is logging on.

Idle. The user is logged on, but is not doing anything.

Hold. The user has issued a command and are waiting for the server to respond.

Upload. The user is uploading a file

Download. The user is downloading a file or a directory listing.

Buttons

 Kill
 Spy
 Edit
 Message

Kick (Kill) a user

This command will allow you to end a user session.

Options

Deny this user... If checked, the IP number the user is using will be added to the IP Deny List for that user
account. Note: The denial applies for that user account only. The IP number will not be added to the default
level IP Deny List.

Disable this... If checked the user account will be disabled and any further login attempts denied.

Spy (on a user)

Working directory

User. The current path as the user knows it

VfSys. The current Virtual Vile System style path for the user.

DOS. The actual file system path.

File Transfers

If the user is uploading or downloading files the paths and progress will show up here.

Current status

Command. The last command issued by the user. Note that some commands will map to other commands.
The command name displayed is the actual command recognized and executed by the server.

Idle time. The time difference between the last network message sent to or received from the user, and the
current system time. If the user uploads or downloads a file, the idle time will be reset each time the server
gets or sends data. The idle time is also updated when the user issues a command. If the idle time exceeds
the Idle Time Limit specified in the Security tab, the user will be disconnected.

Pending message(s). Tells if the user has queued messages from you or from the system.

Statistics. File transfer statistics (number of files) uploaded and downloaded. The number in brackets are
the counters for the current session.

IP Number. The IP number the user is calling from.

IP Name. When a user connects, the server issues a reverse DNS lookup on the user. If the name server
returns a domain name, this will be displayed here.

Buttons

 Kicks the user offline.

 Shows a list of all regular files the user has uploaded or downloaded during the current session.

Send a Message to a user

Send a message to one or all the users that are online.

FTP protocol considerations

The ability to send messages from the FTP server to the users FTP client was never thought of when the
FTP protocol was designed. As a result there are no way to send asynchronous messages. And the FTP
clients will not expect to receive this kind of messages.

The FTP protocol is very strict. The user sends a command and the server sends a definite or temporary
answer. If the answer is temporary, the users FTP client will wait for a definite answer to follow.

This feature is implemented by queuing up messages and send them together with the next regular FTP
protocol message to the user. If the user is transmitting a file, or examining a directory listing, it can take
several minutes (or longer) before the message is sent. If the user just drops the connection the message
will be trashed when the server cleans up the internal resources for that connection.

Another problem is that the message can disappear among other FTP protocol specific messages. And
further more, some ftp clients will only show a few lines or no messages at all.

The conclusion is that this is a neat feature, but there is no guarantee that the message will be delivered.
And if it is delivered, there is no guarantee that the user will see it.

Tip

If you use this feature, make a multi line message with a little noise in it in order to get the attention of the
user.

Hi there. How are you?

Messages as the one above is far easier to see than a message with only a line or two of text.

The users can also send a message to the System Console .

System Attributes

System attributes

Go offline when ready. The server will go offline when the last user has ended his session. New logins
will be refused unless the caller belongs in the Sysadmin class.

...and exit. When the server goes offline it will also shut down.

Deny all logins. All callers except those who belong in the Sysadmin class will be refused.

No anonymous logins. Only users with normal passwords will be allowed to log in.

Max Users. The maximum number of concurrent sessions that is permitted. Users in the Sysadmin class can
log in regardless of this setting. Note: This number is the absolute total, including anonymous users.

Anon. The maximum number of concurrent anonymous sessions that is permitted. Anonymous users are
users without a normal password.

IP Number. The IP number on the current machine. On systems with several IP numbers it is undefined
what IP number that will be reported. Note: This number is only provided for your information. It is stored
in the .FtpDaemon.ini file, but the server will never look at the number. Each time it goes online, it will
ask the TCP/IP stack about the current IP number, and display the information returned.

Port. Normally a FTP server will listen to port 21. Some sites use other numbers of security reasons, of
because they run several FTP services on the same machine. You can enter the port number you want the
server to use here. The new number will be user the next time the server goes online. See RFC 1700 for a
list over port numbers and their assignments.

Messages from the users

The FTP users can send messages to the System Console via the SITE MSG command. The messages will appear in
the user Messages window in the order they come in.

The number of lines in this window is the same as the number of lines configured for the Log Window.

If you want a notification about incoming messages, you can let the server play a sound at this event.

You can also send a message back to the user.

Log Window

The log window displays the most recent logged events. You can specify which events you want to see and how
many lines the window can contain in the Log Properties setup.

By default the log window will visualize the last messages. However, if you click on a line somewhere in the log,
this line will remain the current selection, and the new messages will not be displayed before you scroll back to the
top and click on the first line.

You can clear the log window.

Log

Like most server software, the War FTP Daemon has the ability to log a large number of events to logfiles. You can
specify which events you want to see and how many lines the window can contain in the Log Properties setup. The
most recent log evens will also be displayed in the Log Window on the System Console.

Log Format

The log is written to a standard DOS textfile where each line describe one log event.

[S 1996 06 23 03:51] WAR-FTPD 1.0b Copyright (c) 1996 by jgaa. WIN32 (WIN95)
[S 1996 06 23 03:51] Microsoft Windows Sockets Version 1.1.
[C 1996 06 23 03:51] 00001 prelogin cntr IP name resolved to jgaa.ldp.no
[L 1996 06 23 03:51] 00001 jgaa cntr User from 193.91.161.12 logged in
[F 1996 06 23 03:52] 00001 jgaa data c:\NETLOG.TXT Sending.
[F 1996 06 23 03:52] 00001 jgaa data c:\NETLOG.TXT File sent successfully. Size: 1799 bytes.
1.757 Kbytes/sec
[L 1996 06 23 03:52] 00001 jgaa cntr User from 193.91.161.12 logged out

Log events

S: System messages.

L: Login/Logout. All events regarding logins and logouts.

F: File Access. Files uploaded, downloaded, deleted, renamed. Also directories that are created or removed.

C: Security messages. Users that are denied access, bad passwords etc.

W: System Warnings. Non-critical error situations in the different modules of the server.

E: Error messages. Critical error situations.

D: Debug messages. Generates a huge number of log output. Used to trace problems in the server or FTP
clients.

Fields in the log

Event

Date and time when the event occurred

User handle

User name

Password (applies only for anonymous users)

“cntr” or “data”: This tells if the event was reported from the control connection module or the data
connection module. The control connection module handles all user commands and security, while the data
connection module handles the file transmissions.

Filename: If the event regards a file transmission, a full DOS path is provided. Directory listings are
reported as the path to the directory. Only regular files are listed.

Descriptive text: Some text to tell about the event.

Note: Log events that does not origin from a user connection will print the log event type, date and time,
and then a descriptive text.

System Status

The current system status is displayed on the bottom of the System Console.

The Window Title is also updated with the current state (Offline, Idle or number of connections).

Running multiple FTP services on the same machine

You can run multiple FTP services on the same machine.

Port Numbers

Port 21 is defined as the FTP listening port. If you run multiple servers you must choose one port for each
server. This is regardless of server software. See RFC 1700 for a list over port numbers and their
assignments.

War FTP Daemon considerations

If you will run several instances of the War FTP Daemon on the same machine, follow the steps below.

1. Install War FTP Daemon and configure it to fit your needs. Do not run the Virtual File System.

2. Install a new copy of the War FTP Daemon in another directory. Do not use the same port
number as any other services on your system, including other FTP servers. Do not use the Virtual
File System.

3. Follow step 2 for each additional server you will use.

If the ftp servers are set up to use different parts of your hard-drives, and has no overlapping directories or
files, you can run the Virtual file System.

When you run several servers, each server will have it's own user database and setup. The two servers will
not share any information, except Directory Changes Messages spread around on your file system.

Multihoming

Multihoming is supported on the user level.

If you have several IP addresses assigned to your server you can make one "virtual" FTP server appear to each of the
IP numbers by following the steps below:

Add a new anonymous user for each IP number. After the name, add @nnn.nnn.nnn.nnn, where nnn is the
(server) IP number this user will log in to.

anonymous@127.0.0.2
anonymous@127.0.0.34

These users will only be allowed to log in when they connect to the IP number at the end of their
name.

Do the same with any other users that are only allowed access via a certain IP address in the server.

Edit the sysmsg#.txt files and add the same suffix to their names.

sysmsg0@127.0.0.2.txt
sysmsg1@127.0.0.2.txt

If no sysmsg file is found for the IP number the user connects to, the default file will be displayed.

Note
The sysmsg files used for multihoming purpose can not be edited from the System Message dialog. You
must edit these files with a text editor.

Users with no IP suffix in their name will be given access to any Server IP number. To deny the system
defined anonymous account simply disable the account.

The IP suffix only works on the user level. It serves no purpose to add the suffix to the group or class
names. You can however assign all users on a certain IP number to one group or class and use that to set up
the default directory access etc.

If you use different server names on the different IP numbers, write the server name in the sysmsg#@ip.txt
files and avoid the system name macro.

It is not possible to log on to the server giving a username with the IP suffix. The suffix is used by the
system.

Multihoming using multiple servers

Version 1.65 of the War FTP Daemon introduce multihoming trough starting several instances of the server.
To enable this feature, go to the Options/Server name dialog and specify what IP number the server should
listen to. If no IP number is defined, the server will listen to all IP numbers assigned to the machine.

For each virtual domain, you must install one copy of the server into a dedicated directory, and set up the IP
number it should use as described above.

Note: When you use several instances of the server, the user database is not shared.

Warning: You may not share the same physical directories/files among the instances
of the server if you use the virtual file system! Doing so can and will destroy the
security settings for VfSys, and will also most likely crash the servers! If you don't
use VfSys, you may share the same up/download directories. The server itself must
be installed in separate directories.

Specifications

Compatibility
· Follows the RFC 959 and 1123 FTP specifications.
· Works with Cute-FTP, WS_FTP, ftp (the one following Win95 and NT), MS Internet Explorer, Netscape

Navigator, AmFTP, M-FTP, GuiFTP, - in fact, there is hardly reported any incompatibility at all.
· Emulates standard UNIX ftp servers, including most ls line parameters and ls formatted output.
· ABOR command supported. (Yes - it's listed in the RFC, but not all PC based FTP servers can handle

it).
· REST command supported (Resume an aborted transfer)
· Import filter for Serv-U user database
· Native support for NT service process mode.
· Optional Wu-ftpd compatible log for file transfers
· Operates on Windows95, Windows NT 3.51 (Intel only) and Windows NT 4.0 (Intel only). War FTP

Daemon is a native 32 bit application and will not work on Windows 3.*. Requires 486 processor or
better.

Design
· Multithreading
· Dialog based system console
· Simple and advanced mode of operation, making it perfect for both small and large FTP services.
· Users are organized in user-groups and user-classes to ease maintenance of time-out, directory/file

access etc.
· Automatic shutdown option when the last user has logged off
· Displays a list of all users online where you can kick one of them, edit the user database entry, send a

message to the user or even spy at the user (see the last given command, current directory, file transfers
and a list of all files this user has sent/received during the current session.

· Supports user supplied messages to the console through the SITE MSG command.
· Supports personal greeting messages to all users, groups and classes.
· Full OLE support for Win95/NT4 .lnk shortcuts
· Online and off-line operation
· In-memory transfer of directory listings
· DOS or UNIX style directory paths
· Mapping of paths to the root path
· Support for long filenames
· Virtual file system for improved performance and functionality, including full UNIX-like security and

links on directory and file level.
· Scheduled re-scans of the Virtual File system to handle changes made on the file system outside the

server.
· "On the fly" generation of index files for the current directory/all files on the system (that the user is

allowed to see)
· Support for comments on any file/directory in "on the fly" generated .index files.
· Macros in the welcome files to display the users name, time-out limit etc.
· On single network/ppp connections, the server shows the current IP number in an edit window, allowing

copy/paste of the number to other applications. It also saves this number to a file.
· Multihoming/multihosting support allows setup of several virtual FTP servers based on the IP number

the user connect to.
· Context-sensitive Help
· Mounting of network drives at startup (NT service mode only)
· Denial of upload if the free disk space runs too low
· Flexible verification option on incoming files. This feature allows you to use “plug-in” modules

(external programs) to verify and validate incoming files before the upload is accepted by the server.
Can be used for CRC checking, virus scanning, processing of file_id.dix files etc. Several free plug-in
modules are made available by experienced War FTP daemon users.

Security
· High level of security with directory-level permissions for read, write, execute, dir, mdkdir, rmdir and

delete.
· Full UNIX security with user group and rwx permissions if the Virtual File System is used
· Upload/Download ratio option for anonymous and regular users. Supports file or byte check (upload #

files/bytes for each # files/bytes to download). Free files can be defined.
· Reports of user access privileges, directory access privileges, etc.
· Maximum number of concurrent connections for users, groups and classes.
· Maximum number of connections based on login IP number (allows you to have ## anonymous logins,

but just # concurrent connections from one workstation. Handy to prevent one user from taking up too
many connections.

· Simple one-button enable or disable option for users, groups and classes
· IP level access control for the system, users, groups and classes. Incoming connections can be refused

before and after login based on the callers IP address.
· Automatic disable of an account if a selectable number of bad passwords are given
· "Not Wanted" list of files that will be refused.
· "Dupe checker" that can deny upload of any filename that exist within the paths of the server
· Disconnect single users without shutting the system down
· No built-in limitations ("crippling"), "secret" connections to my site or any other ugly stuff.

Significant changes since 1.20b
· Several important bug-fixes
· The memory usage in the Virtual File System is reduced by 68%
· The Virtual File System is optimized. Load time is reduced ~70% and flush time reduced to ~ 10 - 100

ms.
· Many new features. NT users will especially appreciate the NT service mode.
· Improved performance
· Improved stability

Technical Support
How to get support

Updated support information and FAQ are available at:

USA: http://www.jgaa.com
Norway: http://home.sol.no/jgaa/

You can also use the usenet group news://alt.comp.jgaa and IRC Undernet #war_ftpd

Bug reports

Please use the Bug report Form if you think you have found a bug.

Files and file formats

Purpose Name Location Format

User Database FtpDaemon.dat Server CWD binary, encrypted
Setup FtpDaemom.ini Server CWD text
System messages sysmsg#.txt Server CWD text
Dir change msgs .message.ftp.txt Directories text
Dir change msgs .message.ftp.txt Server CWD text
VfSys data .Index.txt Directories binary text, hidden
Links *.lnk Directories Win95/NT4 shortcut
Log LogFile.txt Server CWD text
Wu-ftpd log (optional) Server CWD text
IP number CurrentIPNumber.txt Server CWD text

IP number file
The IP number file “CurrentIPNumber.txt” is updated each time the servers goes online and contains the machines
IP number as reported by Winsock.

The purpose of this file is to allow other programs to post or email the IP number when the server is available.

Wu-ftpd log file

Each server entry is composed of a single line of the following form, with all fields being separated by spaces.

current-time transfer-time remote-host file-size filename transfer-type special-action-flag direction
access-mode username service-name authentication-method authenticated-user-id

current-time is the current local time in the form "DDD MMM dd hh:mm:ss YYYY". Where DDD
is the day of the week, MMM is the month, dd is the day of the month,
hh is the hour, mm is the minutes, ss is the seconds, and YYYY is the year.

transfer-time is the total time in seconds for the transfer.

remote-host is the remote host name.

file-size is the size of the transfered file in bytes.

filename is the name of the transfered file.

transfer-type is a single character indicating the type of transfer. Can be one of:

a for an ascii transfer
b for a binary transfer

special-action-flag is one or more single character flags indicating any special action taken.
Can be one or more of:

C file was compressed (not used by War)
U file was uncompressed (not used by War)
T file was tar'ed (not user by War)
_ no action was taken (not user by War)

direction is the direction of the transfer. Can be one of:

o outgoing
i incoming

access-mode is the method by which the user is logged in. Can be one of:

(anonymous) is for an anonymous guest user.
(guest) is for an passworded guest user
(real) is for a local authenticated user.

username is the local username, or if guest, the ID string given.

service-name is the name of the service being invoked, usually FTP.

authentication-method is the method of authentication used. Can be one of:

none
RFC931 Authentication (not used by War)

authenticated-user-id is the user id returned by the authentication method. A * is used if an authenticated
user id is not available. (War will currently always use * since it do not authenticate the users).

User Database
The user database is an encrypted binary file that contain all information about users, groups, classes and the default
system properties. It is read when the server starts up and flushed to disk in 10 minutes intervals. It is also flushed to
the disk when you exit the Security tab and when the server shuts down.

Location: Server CWD

.Index.txt (Physical file)

The Virtual File System flushes it's data to disk every 7 minutes. The information regarding a file is stored in the
same directory as the file in a hidden file named .Index.txt. This makes it possible to move directories without
loosing the extra information maintained by the Virtual File System.

The file is basically a normal textfile, and it can be edited in Notepad. The physical file is not accessible for users.
The .Index.txt file the user is presented for is a special form of a directory listing.

WAR-FTPD 1.0b 3
^Aftp^A 0777 ^A(null)^A ^A(null)^A 5 0 ^Amain FTP dir^A
^Atmp^A 0777 ^A(null)^A ^A(null)^A 1 0 ^A(null)^A
*^AORO.ZIP^A 0666 ^ATommy^A ^A(null)^A ^Ad:\ftp\ORO.ZIP^A
^ABAL_GRE.GIF^A 0646 ^Aanonymous^A ^AVisitor^A 0 0 ^A(null)^A
^ABAL_GRY.GIF^A 0646 ^Aanonymous^A ^AVisitor^A 0 0 ^A(null)^A
^ABAL_PUR.GIF^A 0646 ^Aanonymous^A ^AVisitor^A 0 0 ^A(null)^A
^ABAL_RED.GIF^A 0646 ^Aanonymous^A ^AVisitor^A 0 0 ^A(null)^A

The first line identifies the file. The number after the version number of the server is the version number of the file.
If you plan to write programs to manipulate these files, make sure not to manipulate files with version numbers
higher than the one's you have documentation for.

Note that strings are enclosed by ^A (ASCII 1).

Older version of this file format

In version 2 of the .Index.txt file format, User names and Class names was not enclosed by ^A.

C sample code

The code below is the server functions that reads and parses the file

// Perms manifests

#define NODE_OREAD S_IRUSR // Owner read
#define NODE_0WRITE S_IWUSR // Owner write
#define NODE_OEXEC S_IXUSR // Owner execute

#define NODE_GREAD S_IRGRP // Group read
#define NODE_GWRITE S_IWGRP // Group write
#define NODE_GEXEC S_IXGRP // Group execute

#define NODE_AREAD S_IROTH // All read
#define NODE_AWRITE S_IWOTH // All write
#define NODE_AEXEC S_IXOTH // All execute

#define NODE_READ 0x0001 // Request read access
#define NODE_WRITE 0x0002 // Request write/delete access
#define NODE_EXEC 0x0004 // Request execute/chdir access
#define NODE_ANY 0x0008 // Request any access

#define NODE_LINK 0x1000 // This is a link to the file
#define NODE_LINK_O 0x8000 // This is also a .lnk link
#define NODE_DIRTY 0x2000 // Need to be flushed
#define NODE_KILLED 0x4000 // File is deleted

#define NODE_DEFAULT_FILE 0666
#define NODE_DEFAULT_DIR 0777

// Flags manifetst

#define INODE_DIR 0x0001 // Directory

#define INODE_DUPE 0x0002 // Allow duplicates
#define INODE_VIRTUAL 0x0004 // No dir, just a name
#define INODE_FREEDL 0x0008 // Free download

void CvfSys::LoadLevel(CvfNode *StartNode, LPCSTR Path)
{
 LOCK_VFSYS
 // Scan for .lnk files

 // Load info from the text file
 FILE *fp;
 CvfNode *Node, *LinkNode;

 if ((fp = fopen(Path,"r")) != NULL)
 {
 char *LineBuf = new char[2048];
 char *FileName = new char[MAX_PATH];
 char *RealPath = new char[MAX_PATH];
 char *Comment = new char[256];
 char *UserName = new char[64];
 char *ClassName = new char[64];
 int Perms, Flags, DlCnt;

 if (fgets(LineBuf,2047,fp) == NULL)
 goto done;

 int FileVersion;
 FileVersion = 0;
 sscanf(LineBuf,"%s %s %d", FileName,RealPath,&FileVersion);
 if ((FileVersion > 3) || (FileVersion < 2))
 {
 Log->LogMsg(LOGF_DEBUG,"CvfSys::LoadLevel(): Unknown .Index.txt file format.");
 goto done;
 }

 while(fgets(LineBuf,2047,fp) != NULL)
 {
 Perms = 0; Flags = 0; *FileName = 0; *RealPath = 0; *Comment = 0; *UserName = 0;
*ClassName = 0; DlCnt = 0;
 if (*LineBuf == '*')
 {
 // Link
 if (FileVersion == 2)
 MySscanf(LineBuf+1,"\1%s\1 %O %s %s \1%s\1",
 FileName, &Perms, UserName, ClassName, RealPath);
 else
 MySscanf(LineBuf+1,"\1%s\1 %O \1%s\1 \1%s\1 \1%s\1",
 FileName, &Perms, UserName, ClassName, RealPath);

 if (*UserName == '(') *UserName = 0;
 if (*ClassName == '(') *ClassName = 0;
 if ((Perms == 0) || !*RealPath || (*RealPath == '('))
 continue; // Bad data...
 if ((LinkNode = ResolveNodeFromDosPath(RealPath)) == NULL)
 continue; // Faled to find link node
 Node = AddLink(LinkNode,StartNode->m_Father);
 Node->m_Perms &= ~0xfff;
 Node->m_Perms |= (Perms & 0xfff) | NODE_LINK ;
 if (*UserName) Node->m_User = strdup(UserName);
 if (*ClassName) Node->m_Class = strdup(ClassName);
 }
 else
 {
 // Normal file info
 if (FileVersion == 2)
 MySscanf(LineBuf,"\1%s\1 %O %s %s %d %ld \1%s\1",
 FileName, &Perms, UserName, ClassName, &Flags, &DlCnt, Comment);
 else
 MySscanf(LineBuf,"\1%s\1 %O \1%s\1 \1%s\1 %d %ld \1%s\1",
 FileName, &Perms, UserName, ClassName, &Flags, &DlCnt, Comment);

 if (*UserName == '(') *UserName = 0;
 if (*ClassName == '(') *ClassName = 0;
 if (!stricmp(Comment,"(null)")) *Comment = 0;
 if (!*FileName)
 continue; // Bad data...

 if ((Node = ResolveNodeFromName(FileName,StartNode)) == NULL)
 {
 // Try .lnk file
 int len = strlen(FileName);
 if ((len > 4) && !stricmp(FileName + (len - 4),".lnk"))
 {
 FileName[len - 4] = 0;
 if ((Node = ResolveNodeFromName(FileName,StartNode)) != NULL)
 {
 if (Node->m_Perms & NODE_LINK_O)
 goto go_on;
 }
 }
 continue; // The file must be deleted...
 }
go_on:
 Node->m_Perms &= ~0xfff;
 Node->m_Perms |= (Perms & 0xfff);
 if (*UserName)
 {
 if (Node->m_User)
 delete Node->m_User;
 Node->m_User = strdup(UserName);
 }
 if (*ClassName)
 {
 if (Node->m_Class)
 delete Node->m_Class;
 Node->m_Class = strdup(ClassName);
 }
 if (*Comment)
 {
 if (Node->m_Inode->m_Comment)
 delete Node->m_Inode->m_Comment;
 Node->m_Inode->m_Comment = strdup(Comment);
 }
 Node->m_Inode->m_Flags = Flags;
 Node->m_Inode->m_DlCnt = DlCnt;
 }
 }

done:
 delete ClassName;
 delete UserName;
 delete Comment;
 delete RealPath;
 delete FileName;
 delete LineBuf;
 fclose(fp);
 }

 // Second pass
 for(Node = StartNode; Node; Node = Node->m_Next)
 {
 if ((Node->m_Inode->m_Flags & INODE_DIR) && !(Node->m_Perms & NODE_LINK) && Node->m_Son)
 LoadExtraInfo(Node);
 }
}

int MySscanf(char *buf, LPCSTR Format, ...)
{
 va_list marker;
 va_start(marker, Format);
 int Rval = 0;

 char *p;
 int *i;
 int base;

 while(*Format)
 {
 if (*Format == '%')
 {
 switch(*++Format)
 {
 case '%':
 *buf++ = '%';
 break;
 case 's':
 p = va_arg(marker,char *);
 while(*buf && (!Format[1] || (*buf != Format[1])))
 *p++ = *buf++;
 *p = 0;
 break;
 case 'l':
 ++Format; // %ld, skip over one to get in sync
 case 'O': // Octal or decimal base.
 base = 10;
 i = va_arg(marker, int *);
 *i = 0;
 if (*buf == '0') // First digit is 0. Use octal
 base = 8; // Octal
 while(*buf && isdigit(*buf))
 {
 *i *= base;
 *i += *buf - '0';
 ++buf;
 }
 break;
 case 'd':
 base = 10;
 i = va_arg(marker, int *);
 *i = 0;
 while(*buf && isdigit(*buf))
 {
 *i *= base;
 *i += *buf - '0';
 ++buf;
 }
 break;
 }
 ++Format;
 }
 else
 {
 while(*buf && (*buf != *Format))
 ++buf;
 ++Format;
 ++buf;
 }
 }

 va_end(marker);
 return Rval;
}

.Index.txt and .SysIdx.txt (Virtual files)

If you use the Virtual File System and have the option enabled, these two files will show up in all directories.

If the user issues a download command, the command will be mapped to ls -I or ls \ -RI, and in stead of sending the
requested file, the user will receive a special directory listing as it was a file.

This listing contains the filename, the number of times the file have been downloaded and a comment (if present).

Some FTP clients, like Cute-ftp, will look for a file named *index* and automatically download and display the
comment after the filename. The download count will then appear as part of the comment.

If you want a more verbose listing of the files at your site, you can log in with the ftp client shipped with Win95/NT,
and issue the following commands:

CD \
DIR -RI c:\temp\list.txt

This will produce a very verbose listing of all the files the server know about and save it as c:\temp\list.txt.

Links

A link is a filename that points to another file or directory. They are useful to ease navigation on a FTP system.

Supported link types

Directory mapping . Maps any directory to the users root path.

OLE Win95/NT .lnk shortcut files. If the Virtual File System is running it will transform these shortcuts to
UNIX style links to speed up the OLE processing. You can use the Win95/NT4 Explorer to create and
maintain shortcuts. The Virtual File System will remove the .lnk extortion from the links. If the Virtual File
System is not running, the server will resolve the shortcut files as if they was links. But in this case the .lnk
extension will be visible.

UNIX links. The Virtual File System can maintain links as if they were part of the file system. You create
and delete such links via the View command.

If the virtual file system is running, you can assign comments and UNIX permissions to shortcut links and UNIX
links.

The LIST command

The LIST command (issued by the users FTP client whenever the user want a directory listing) is the headache for
all FTP client and server developers. There is no standardized format of the output.

The WAR FTP Daemon has it's own version of the UNIX ls command built in, and calls this when it receives a LIST
command. The ls output is understood by all modern FTP clients and WEB browsers. The disadvantage is that the
time and date shown is relative to the servers local time zone, and that the file time of older files is lost.

Formal syntax

LIST [<void>] | [pattern] | [arguments]

The ls module can handle both pattern and arguments, but this is currently not supported by the FTP
protocol. The user must therefore CD to the directory if he want to use some of the arguments.

Arguments

 -A List all entries except for `.' and `..'.

 -C Force multi-column output

 -F Display a slash (/) immediately after each pathname that is a di-
 rectory, an asterisk (*) after each that is executable, and an at
 sign (@) after each symbolic link.

 -L If argument is a symbolic link, list the file or directory the
 link references rather than the link itself. See also the
 How To Display Links option.

 -R Recursively list subdirectories encountered.

 -a Include directory entries whose names begin with a dot (.).

 -d Directories are listed as plain files (not searched recursively)
 and symbolic links in the argument list are not indirected
 through.

 -i For each file, print the file's file serial number (inode num-
 ber).

 -l (The lowercase letter ``ell.'') List in long format. (See be-
 low.) If the output is to a terminal, a total sum for all the
 file sizes is output on a line before the long listing.

 -1 (The numeric digit ``one.'') Force output to be one entry per
 line. This is the default when output is not to a terminal.

 -I Include header text, comments and download counter.

 -S Interpret the path as a single file or directory

Patterns

Ordinary pattern matching with * and ? is supported for the file name.

Limitations

Sorting and intelligent pattern matching (/*/*.zip) is not supported.

Tips

If you use the -L argument, links will be displayed regular files or directories without the 'l' flag.

About the author

Well... I don’t like to expose myself, but on the other hand, I do receive lot’s of emails from people that wonder who
I am, and why I release my software as freeware. Of course, I also receive lot’s of “business opportunities” from
people that realize the commercial potential of my programs and believe that I’m some kind of jerk they can rip
off...

To realize why I do what I do, you have to know a little bit about the Norwegian society.

Norway is among the richest countries in the world. The country is well known for it’s efforts to make peace in the
World, to secure the environment and to enforce human rights everywhere. The government is very eager to make
the world a better place - at least outside the Norwegian borders.
Most people here believe that Norway is the best place on earth. I once did too. Until one fatal night about 12 years
ago.

At that time I was among the most popular radio journalists in my hometown. One night I was arrested by the police
and asked to lay against a person I did not now, in order to get him convicted for burglary. I refused. The next day
the police wanted to imprison me, unless I signed their story. My councilor advised me to give a false testimony,
sign the statement they wanted and walk out as a free man, as if this was the most natural thing in the world. I was
shocked. But I refused and was imprisoned. One week later the police realized who I was, and set me free, with
many excuses and hopes that I had “no hard feelings”.
When I got back behind the microphone I started to talk about police brutality, bestiality and injustice. About the
same time other groups realized what was going on and the police got accused for brutality by a large number of
victims. The “good citizens” of the town was shocked about these “wild” accusations, the press called them liars,
and many of them was later convicted for “false accusations” against the police. Later on it is proven behind any
doubt that the police in my hometown is brutal, that they indeed break the law, imprison innocent people if they feel
like it and so on. Even Amnesty International has confirmed the situation. The government however refuse to do
anything about it. It is a tradition in Norway that no one in the legal system is charged for any crimes they commit
“in the line of duty”. A few years back a drunk police officer strangled a teenager, on his spare time, and got away
with it.
I have seen and heard people being tortured in the basement of the local police station. Early 1996 a prisoner was
burned to death in his cell in the local prison, after almost a year of illegal imprisonment. They called that suicide.

In 1992 I got into a dispute with one of the criminal police officers in the town. He threatened me several times on
my life. To his surprise I got angry, not afraid. When a 12 year old friend of mine run away from an institution and
hide in my apartment, while I was in another city, he decided to “get me”. I was arrested just after I returned home,
but I kept my mouth shot about my alibi. The police thought that I had been in town the entire 2 weeks the boy was
missing, and forced him to make false accusations about sexual abuse. Since I am gay, he believed that a conviction
would come real easy. When they learned about my alibi they realized that they had a problem. In desperation they
started to look for new accusations, and arrested a huge number of my friends in order to force them to testify
against me - about anything. After 1 year they finally found a boy I once knew, who was mentally ill and accused me
for murder, attempted murder and rape. The experts that examined the boy concluded that he was lying. His family
believed he was lying, and so did his friends.
In court I managed to prove that the boy was lying about almost everything in his statement. I also proved that the

police had lied in court, had produced false evidence, had harassed my friends, and that I had an alibi for the charges
about sexual abuse. The prosecutor did not even try to deny this. He attacked me for being gay (something that is
perfectly legal in Norway), and asked the jury to convict me for my political opinions and my sexual orientation.
And the jury followed his advice. They knew that I was innocent, and still answered yes to most of the questions,
including rape, because I dared to use my constitutional rights of free speech, because I dared to be idealistic, and
because I dared to criticize the conditions of the police and the legal system in Norway!

I was sentenced to 2 years in prison, and to pay a fine of about $8000 (a little more than I earned each month at that
time). When the police 3 weeks later realized that I was working to get more hard evidences against them, the called
out armed forces to get me. I was sent to jail 4 months before the scheduled time. Now I was real angry! I refused to
talk with them, I refused to pay the fine (I actually sold, gave away or destroyed all my belongings to prevent the
authorities to get a single cent from me). And in the prison I refused to work.

The prison I was sent to is the Norwegian “model prison”, a place that is presented to the press and the public as a
very human place, with a great freedom for the prisoners, a place where “criminals” are turned into productive and
well adjusted citizens. A very close friend of mine hung himself in that place in 1992. A prisoner that survived 5
years in on of the worst prisons in USA turned crazy after just 3 months of “special treatment”.

A lot happened during the 15 months I was kept as a political prisoner. To some of the staff it became an obsessions
to “break” me. I was harassed, beaten, kicked, called “queer”, I found drugs planted in the room where I received
visitors in a desperate attempt to frame me. I was threatened, refused food, money, soap and even toilet paper. I was
kept isolated for a total of 8 months. Not once did they succeed in their attempts to manufacture new charges. Not
once did they succeed in making me back off. My defense was passive resistance only. I never even raised my voice.

I am not a criminal. I am not a rapist. I don’t do drugs. I don’t even drink alcohol. But I am very, very angry. I refuse
to accept a society that pretend to protect and encourage human rights and a better world, when the truth is that they
prosecute human right activists and peaceful idealists with false, criminal charges.

My friends and my family has advised me to turn my back to the past and get back into a “normal life”. I can’t do
that. My commitment to truth and justice is too strong, my sacrifices to these ideals too expensive. I have sworn that
the Norwegian government shall walk over my dead body to get a single cent from me. I have sworn that the people
that committed these crimes against me, and against the basic ideals of the population of this country; the police
officers, the prosecutor, the jury, the judge - shall not get away with their crimes this time. Sometimes, very rarely,
the criminals within the justice system choose the wrong person to mess with.

So, - why do I give away my software for free? There are several reasons. I don’t want to give the Norwegian
government any money. Not for the fine, and not in taxes. Of course, I could sell the software aboard and take steps
to prevent the money from falling into their hands. But that would be a crime. And as stated above - I am not a
criminal. Not in any way! Another reason is my concern about free speech. Internet is being commercialized and
censored, and the only way to secure the exchange of opinions , views, statements, and stories, is to make advanced
communication software available to anyone. By providing the Internet community with free, high quality
communications software, I hope that my contribution will help and encourage the exchange of all kind of
information. Most of this information will be junk, some of it illegal, much of it also strongly against my personal
opinions and values, - but that is the price we all have to pay if the free spirit shall survive.

And - why do I tell this story? Why do I expose my self for the risk of being called criminal, perverted or even rapist
on the Internet? I do this because I have no other option. A false conviction is among the worst and most cruel
crimes a person can be a victim of. I demand the right to be recognized as a victim of crimes, and not as an offender.
I demand the right to be recognized as the person I am; a person with dignity, ideals and moral standards. You can
choose to believe me, or you can choose to regard me as a liar - but frankly - would any sane person do what I do
and tell a story like this, unless it is the truth?

The server CWD is normally the directory where the server is installed.

A link is a filename that points to another file. Links are usually used to ease navigation by providing aliased
directories the user can CD to.

User: A person or a process on behalf of a person wishing to obtain file transfer service. The human user may
interact directly with a server-FTP process, but use of a user-FTP process is preferred since the protocol design is
weighted towards automata.

Group: A template with user properties. All users are assigned to a group, and all users inherits the shared properties
of their group unless (expect for those properties overridden by the users own properties).

Multihoming: To let the server appear as several ftp services, depending on the IP number the user connects to.
Require the server machine to have several IP numbers assign to the TCP/IP stack.

Levels: Many options can be set in the user, group, class and default properties. When the server needs to know the
state of such an option, it scans the different 'levels' for a determinate answer. If it find a or

 it use that value. If the option is set to
 it looks at the next level. Most options are scanned in this order: user >> group >> class >> default.

Control connection: The network connection between the user FTP client and the server, where the FTP commands
and reply codes are sent. This connection remains open during the entire session.

Data connection: A network connection created for file transfers and directory listings. The Data connection will
usually be closed when the transfer is complete and a new connection created when the next transfer is about to start.

Root path: The entry point to the file system for a user.

This file will be sent to the user over the control connection when he enters the directory where it is located.

If present, this file will be sent to the user over the control connection when he enters a directory that does not have
its own .message.ftp.txt file.

DES13, or just DES stands for Data Encryption Standard, and was the common scramble algorithm used to protect
passwords in UNIX. Today there are several new and more secure algorithms, but DES is still widely used. Any key
scrambled with DES13 will result in a random 13 bytes long string of text. Authentication programs, like UNIX
login and the War FTP Daemon can determine if a typed password correspond with a scrambled password.

Internal
link

Server CWD

user

users

user-group

user-groups

multi-homing

level.message.ftp.txt*!popupId(ex_message_ftp)
.message.ftp.txt

data connection

control connection

root path

Internet Port Numbers (RFC 1700)

WELL KNOWN PORT NUMBERS

The Well Known Ports are controlled and assigned by the IANA and on
most systems can only be used by system (or root) processes or by
programs executed by privileged users.

Ports are used in the TCP [RFC793] to name the ends of logical
connections which carry long term conversations. For the purpose of
providing services to unknown callers, a service contact port is
defined. This list specifies the port used by the server process as
its contact port. The contact port is sometimes called the
"well-known port".

To the extent possible, these same port assignments are used with the
UDP [RFC768].

The assigned ports use a small portion of the possible port numbers.
For many years the assigned ports were in the range 0-255. Recently,
the range for assigned ports managed by the IANA has been expanded to
the range 0-1023.

Port Assignments:

Keyword Decimal Description References
------- ------- ----------- ----------
 0/tcp Reserved
 0/udp Reserved
Jon Postel <postel@isi.edu>
tcpmux 1/tcp TCP Port Service Multiplexer
tcpmux 1/udp TCP Port Service Multiplexer
Mark Lottor <MKL@nisc.sri.com>
compressnet 2/tcp Management Utility
compressnet 2/udp Management Utility
compressnet 3/tcp Compression Process
compressnet 3/udp Compression Process
Bernie Volz <VOLZ@PROCESS.COM>
4/tcp Unassigned
4/udp Unassigned
rje 5/tcp Remote Job Entry
rje 5/udp Remote Job Entry
Jon Postel <postel@isi.edu>
6/tcp Unassigned
6/udp Unassigned
echo 7/tcp Echo
echo 7/udp Echo
Jon Postel <postel@isi.edu>
8/tcp Unassigned
8/udp Unassigned
discard 9/tcp Discard
discard 9/udp Discard
Jon Postel <postel@isi.edu>
10/tcp Unassigned
10/udp Unassigned
systat 11/tcp Active Users
systat 11/udp Active Users
Jon Postel <postel@isi.edu>
12/tcp Unassigned
12/udp Unassigned
daytime 13/tcp Daytime
daytime 13/udp Daytime
Jon Postel <postel@isi.edu>
14/tcp Unassigned
14/udp Unassigned
15/tcp Unassigned [was netstat]
15/udp Unassigned
16/tcp Unassigned

16/udp Unassigned
qotd 17/tcp Quote of the Day
qotd 17/udp Quote of the Day
Jon Postel <postel@isi.edu>
msp 18/tcp Message Send Protocol
msp 18/udp Message Send Protocol
Rina Nethaniel <---none--->
chargen 19/tcp Character Generator
chargen 19/udp Character Generator
ftp-data 20/tcp File Transfer [Default Data]
ftp-data 20/udp File Transfer [Default Data]
ftp 21/tcp File Transfer [Control]
ftp 21/udp File Transfer [Control]
Jon Postel <postel@isi.edu>
22/tcp Unassigned
22/udp Unassigned
telnet 23/tcp Telnet
telnet 23/udp Telnet
Jon Postel <postel@isi.edu>
 24/tcp any private mail system
 24/udp any private mail system
Rick Adam <rick@UUNET.UU.NET>
smtp 25/tcp Simple Mail Transfer
smtp 25/udp Simple Mail Transfer
Jon Postel <postel@isi.edu>
26/tcp Unassigned
26/udp Unassigned
nsw-fe 27/tcp NSW User System FE
nsw-fe 27/udp NSW User System FE
Robert Thomas <BThomas@F.BBN.COM>
28/tcp Unassigned
28/udp Unassigned
msg-icp 29/tcp MSG ICP
msg-icp 29/udp MSG ICP
Robert Thomas <BThomas@F.BBN.COM>
30/tcp Unassigned
30/udp Unassigned
msg-auth 31/tcp MSG Authentication
msg-auth 31/udp MSG Authentication
Robert Thomas <BThomas@F.BBN.COM>
32/tcp Unassigned
32/udp Unassigned
dsp 33/tcp Display Support Protocol
dsp 33/udp Display Support Protocol
Ed Cain <cain@edn-unix.dca.mil>
34/tcp Unassigned
34/udp Unassigned
 35/tcp any private printer server
 35/udp any private printer server
Jon Postel <postel@isi.edu>
36/tcp Unassigned
36/udp Unassigned
time 37/tcp Time
time 37/udp Time
Jon Postel <postel@isi.edu>
rap 38/tcp Route Access Protocol
rap 38/udp Route Access Protocol
Robert Ullmann <ariel@world.std.com>
rlp 39/tcp Resource Location Protocol
rlp 39/udp Resource Location Protocol
Mike Accetta <MIKE.ACCETTA@CMU-CS-A.EDU>
40/tcp Unassigned
40/udp Unassigned
graphics 41/tcp Graphics
graphics 41/udp Graphics
nameserver 42/tcp Host Name Server
nameserver 42/udp Host Name Server
nicname 43/tcp Who Is
nicname 43/udp Who Is
mpm-flags 44/tcp MPM FLAGS Protocol
mpm-flags 44/udp MPM FLAGS Protocol

mpm 45/tcp Message Processing Module [recv]
mpm 45/udp Message Processing Module [recv]
mpm-snd 46/tcp MPM [default send]
mpm-snd 46/udp MPM [default send]
Jon Postel <postel@isi.edu>
ni-ftp 47/tcp NI FTP
ni-ftp 47/udp NI FTP
Steve Kille <S.Kille@isode.com>
auditd 48/tcp Digital Audit Daemon
auditd 48/udp Digital Audit Daemon
Larry Scott <scott@zk3.dec.com>
login 49/tcp Login Host Protocol
login 49/udp Login Host Protocol
Pieter Ditmars <pditmars@BBN.COM>
re-mail-ck 50/tcp Remote Mail Checking Protocol
re-mail-ck 50/udp Remote Mail Checking Protocol
Steve Dorner <s-dorner@UIUC.EDU>
la-maint 51/tcp IMP Logical Address Maintenance
la-maint 51/udp IMP Logical Address Maintenance
Andy Malis <malis_a@timeplex.com>
xns-time 52/tcp XNS Time Protocol
xns-time 52/udp XNS Time Protocol
Susie Armstrong <Armstrong.wbst128@XEROX>
domain 53/tcp Domain Name Server
domain 53/udp Domain Name Server
Paul Mockapetris <PVM@ISI.EDU>
xns-ch 54/tcp XNS Clearinghouse
xns-ch 54/udp XNS Clearinghouse
Susie Armstrong <Armstrong.wbst128@XEROX>
isi-gl 55/tcp ISI Graphics Language
isi-gl 55/udp ISI Graphics Language
xns-auth 56/tcp XNS Authentication
xns-auth 56/udp XNS Authentication
Susie Armstrong <Armstrong.wbst128@XEROX>
 57/tcp any private terminal access
 57/udp any private terminal access
Jon Postel <postel@isi.edu>
xns-mail 58/tcp XNS Mail
xns-mail 58/udp XNS Mail
Susie Armstrong <Armstrong.wbst128@XEROX>
 59/tcp any private file service
 59/udp any private file service
Jon Postel <postel@isi.edu>
 60/tcp Unassigned
 60/udp Unassigned
ni-mail 61/tcp NI MAIL
ni-mail 61/udp NI MAIL
Steve Kille <S.Kille@isode.com>
acas 62/tcp ACA Services
acas 62/udp ACA Services
E. Wald <ewald@via.enet.dec.com>
63/tcp Unassigned
63/udp Unassigned
covia 64/tcp Communications Integrator (CI)
covia 64/udp Communications Integrator (CI)
"Tundra" Tim Daneliuk
<tundraix!tundra@clout.chi.il.us>
tacacs-ds 65/tcp TACACS-Database Service
tacacs-ds 65/udp TACACS-Database Service
Kathy Huber <khuber@bbn.com>
sql*net 66/tcp Oracle SQL*NET
sql*net 66/udp Oracle SQL*NET
Jack Haverty <jhaverty@ORACLE.COM>
bootps 67/tcp Bootstrap Protocol Server
bootps 67/udp Bootstrap Protocol Server
bootpc 68/tcp Bootstrap Protocol Client
bootpc 68/udp Bootstrap Protocol Client
Bill Croft <Croft@SUMEX-AIM.STANFORD.EDU>
tftp 69/tcp Trivial File Transfer
tftp 69/udp Trivial File Transfer
David Clark <ddc@LCS.MIT.EDU>

gopher 70/tcp Gopher
gopher 70/udp Gopher
Mark McCahill <mpm@boombox.micro.umn.edu>
netrjs-1 71/tcp Remote Job Service
netrjs-1 71/udp Remote Job Service
netrjs-2 72/tcp Remote Job Service
netrjs-2 72/udp Remote Job Service
netrjs-3 73/tcp Remote Job Service
netrjs-3 73/udp Remote Job Service
netrjs-4 74/tcp Remote Job Service
netrjs-4 74/udp Remote Job Service
Bob Braden <Braden@ISI.EDU>
 75/tcp any private dial out service
 75/udp any private dial out service
Jon Postel <postel@isi.edu>
deos 76/tcp Distributed External Object Store
deos 76/udp Distributed External Object Store
Robert Ullmann <ariel@world.std.com>
 77/tcp any private RJE service
 77/udp any private RJE service
Jon Postel <postel@isi.edu>
vettcp 78/tcp vettcp
vettcp 78/udp vettcp
Christopher Leong <leong@kolmod.mlo.dec.com>
finger 79/tcp Finger
finger 79/udp Finger
David Zimmerman <dpz@RUTGERS.EDU>
www-http 80/tcp World Wide Web HTTP
www-http 80/udp World Wide Web HTTP
Tim Berners-Lee <timbl@nxoc01.cern.ch>
hosts2-ns 81/tcp HOSTS2 Name Server
hosts2-ns 81/udp HOSTS2 Name Server
Earl Killian <EAK@MORDOR.S1.GOV>
xfer 82/tcp XFER Utility
xfer 82/udp XFER Utility
Thomas M. Smith <tmsmith@esc.syr.ge.com>
mit-ml-dev 83/tcp MIT ML Device
mit-ml-dev 83/udp MIT ML Device
David Reed <--none--->
ctf 84/tcp Common Trace Facility
ctf 84/udp Common Trace Facility
Hugh Thomas <thomas@oils.enet.dec.com>
mit-ml-dev 85/tcp MIT ML Device
mit-ml-dev 85/udp MIT ML Device
David Reed <--none--->
mfcobol 86/tcp Micro Focus Cobol
mfcobol 86/udp Micro Focus Cobol
Simon Edwards <--none--->
 87/tcp any private terminal link
 87/udp any private terminal link
Jon Postel <postel@isi.edu>
kerberos 88/tcp Kerberos
kerberos 88/udp Kerberos
B. Clifford Neuman <bcn@isi.edu>
su-mit-tg 89/tcp SU/MIT Telnet Gateway
su-mit-tg 89/udp SU/MIT Telnet Gateway
Mark Crispin <MRC@PANDA.COM>
dnsix 90/tcp DNSIX Securit Attribute Token Map
dnsix 90/udp DNSIX Securit Attribute Token Map
Charles Watt <watt@sware.com>
mit-dov 91/tcp MIT Dover Spooler
mit-dov 91/udp MIT Dover Spooler
Eliot Moss <EBM@XX.LCS.MIT.EDU>
npp 92/tcp Network Printing Protocol
npp 92/udp Network Printing Protocol
Louis Mamakos <louie@sayshell.umd.edu>
dcp 93/tcp Device Control Protocol
dcp 93/udp Device Control Protocol
Daniel Tappan <Tappan@BBN.COM>
objcall 94/tcp Tivoli Object Dispatcher
objcall 94/udp Tivoli Object Dispatcher

Tom Bereiter <--none--->
supdup 95/tcp SUPDUP
supdup 95/udp SUPDUP
Mark Crispin <MRC@PANDA.COM>
dixie 96/tcp DIXIE Protocol Specification
dixie 96/udp DIXIE Protocol Specification
Tim Howes <Tim.Howes@terminator.cc.umich.edu>
swift-rvf 97/tcp Swift Remote Vitural File Protocol
swift-rvf 97/udp Swift Remote Vitural File Protocol
Maurice R. Turcotte
<mailrus!uflorida!rm1!dnmrt%rmatl@uunet.UU.NET>
tacnews 98/tcp TAC News
tacnews 98/udp TAC News
Jon Postel <postel@isi.edu>
metagram 99/tcp Metagram Relay
metagram 99/udp Metagram Relay
Geoff Goodfellow <Geoff@FERNWOOD.MPK.CA.U>
newacct 100/tcp [unauthorized use]
hostname 101/tcp NIC Host Name Server
hostname 101/udp NIC Host Name Server
Jon Postel <postel@isi.edu>
iso-tsap 102/tcp ISO-TSAP
iso-tsap 102/udp ISO-TSAP
Marshall Rose <mrose@dbc.mtview.ca.us>
gppitnp 103/tcp Genesis Point-to-Point Trans Net
gppitnp 103/udp Genesis Point-to-Point Trans Net
acr-nema 104/tcp ACR-NEMA Digital Imag. & Comm. 300
acr-nema 104/udp ACR-NEMA Digital Imag. & Comm. 300
Patrick McNamee <--none--->
csnet-ns 105/tcp Mailbox Name Nameserver
csnet-ns 105/udp Mailbox Name Nameserver
Marvin Solomon <solomon@CS.WISC.EDU>
3com-tsmux 106/tcp 3COM-TSMUX
3com-tsmux 106/udp 3COM-TSMUX
Jeremy Siegel <jzs@NSD.3Com.COM>
rtelnet 107/tcp Remote Telnet Service
rtelnet 107/udp Remote Telnet Service
Jon Postel <postel@isi.edu>
snagas 108/tcp SNA Gateway Access Server
snagas 108/udp SNA Gateway Access Server
Kevin Murphy <murphy@sevens.lkg.dec.com>
pop2 109/tcp Post Office Protocol - Version 2
pop2 109/udp Post Office Protocol - Version 2
Joyce K. Reynolds <jkrey@isi.edu>
pop3 110/tcp Post Office Protocol - Version 3
pop3 110/udp Post Office Protocol - Version 3
Marshall Rose <mrose@dbc.mtview.ca.us>
sunrpc 111/tcp SUN Remote Procedure Call
sunrpc 111/udp SUN Remote Procedure Call
Chuck McManis <cmcmanis@sun.com>
mcidas 112/tcp McIDAS Data Transmission Protocol
mcidas 112/udp McIDAS Data Transmission Protocol
Glenn Davis <davis@unidata.ucar.edu>
auth 113/tcp Authentication Service
auth 113/udp Authentication Service
Mike St. Johns <stjohns@arpa.mil>
audionews 114/tcp Audio News Multicast
audionews 114/udp Audio News Multicast
Martin Forssen <maf@dtek.chalmers.se>
sftp 115/tcp Simple File Transfer Protocol
sftp 115/udp Simple File Transfer Protocol
Mark Lottor <MKL@nisc.sri.com>
ansanotify 116/tcp ANSA REX Notify
ansanotify 116/udp ANSA REX Notify
Nicola J. Howarth <njh@ansa.co.uk>
uucp-path 117/tcp UUCP Path Service
uucp-path 117/udp UUCP Path Service
sqlserv 118/tcp SQL Services
sqlserv 118/udp SQL Services
Larry Barnes <barnes@broke.enet.dec.com>
nntp 119/tcp Network News Transfer Protocol

nntp 119/udp Network News Transfer Protocol
Phil Lapsley <phil@UCBARPA.BERKELEY.EDU>
cfdptkt 120/tcp CFDPTKT
cfdptkt 120/udp CFDPTKT
John Ioannidis <ji@close.cs.columbia.ed>
erpc 121/tcp Encore Expedited Remote Pro.Call
erpc 121/udp Encore Expedited Remote Pro.Call
Jack O'Neil <---none--->
smakynet 122/tcp SMAKYNET
smakynet 122/udp SMAKYNET
Mike O'Dowd <odowd@ltisun8.epfl.ch>
ntp 123/tcp Network Time Protocol
ntp 123/udp Network Time Protocol
Dave Mills <Mills@HUEY.UDEL.EDU>
ansatrader 124/tcp ANSA REX Trader
ansatrader 124/udp ANSA REX Trader
Nicola J. Howarth <njh@ansa.co.uk>
locus-map 125/tcp Locus PC-Interface Net Map Ser
locus-map 125/udp Locus PC-Interface Net Map Ser
Eric Peterson <lcc.eric@SEAS.UCLA.EDU>
unitary 126/tcp Unisys Unitary Login
unitary 126/udp Unisys Unitary Login
<feil@kronos.nisd.cam.unisys.com>
locus-con 127/tcp Locus PC-Interface Conn Server
locus-con 127/udp Locus PC-Interface Conn Server
Eric Peterson <lcc.eric@SEAS.UCLA.EDU>
gss-xlicen 128/tcp GSS X License Verification
gss-xlicen 128/udp GSS X License Verification
John Light <johnl@gssc.gss.com>
pwdgen 129/tcp Password Generator Protocol
pwdgen 129/udp Password Generator Protocol
Frank J. Wacho <WANCHO@WSMR-SIMTEL20.ARMY.MIL>
cisco-fna 130/tcp cisco FNATIVE
cisco-fna 130/udp cisco FNATIVE
cisco-tna 131/tcp cisco TNATIVE
cisco-tna 131/udp cisco TNATIVE
cisco-sys 132/tcp cisco SYSMAINT
cisco-sys 132/udp cisco SYSMAINT
statsrv 133/tcp Statistics Service
statsrv 133/udp Statistics Service
Dave Mills <Mills@HUEY.UDEL.EDU>
ingres-net 134/tcp INGRES-NET Service
ingres-net 134/udp INGRES-NET Service
Mike Berrow <---none--->
loc-srv 135/tcp Location Service
loc-srv 135/udp Location Service
Joe Pato <apollo!pato@EDDIE.MIT.EDU>
profile 136/tcp PROFILE Naming System
profile 136/udp PROFILE Naming System
Larry Peterson <llp@ARIZONA.EDU>
netbios-ns 137/tcp NETBIOS Name Service
netbios-ns 137/udp NETBIOS Name Service
netbios-dgm 138/tcp NETBIOS Datagram Service
netbios-dgm 138/udp NETBIOS Datagram Service
netbios-ssn 139/tcp NETBIOS Session Service
netbios-ssn 139/udp NETBIOS Session Service
Jon Postel <postel@isi.edu>
emfis-data 140/tcp EMFIS Data Service
emfis-data 140/udp EMFIS Data Service
emfis-cntl 141/tcp EMFIS Control Service
emfis-cntl 141/udp EMFIS Control Service
Gerd Beling <GBELING@ISI.EDU>
bl-idm 142/tcp Britton-Lee IDM
bl-idm 142/udp Britton-Lee IDM
Susie Snitzer <---none--->
imap2 143/tcp Interim Mail Access Protocol v2
imap2 143/udp Interim Mail Access Protocol v2
Mark Crispin <MRC@PANDA.COM>
news 144/tcp NewS
news 144/udp NewS
James Gosling <JAG@SUN.COM>

uaac 145/tcp UAAC Protocol
uaac 145/udp UAAC Protocol
David A. Gomberg <gomberg@GATEWAY.MITRE.ORG>
iso-tp0 146/tcp ISO-IP0
iso-tp0 146/udp ISO-IP0
iso-ip 147/tcp ISO-IP
iso-ip 147/udp ISO-IP
Marshall Rose <mrose@dbc.mtview.ca.us>
cronus 148/tcp CRONUS-SUPPORT
cronus 148/udp CRONUS-SUPPORT
Jeffrey Buffun <jbuffum@APOLLO.COM>
aed-512 149/tcp AED 512 Emulation Service
aed-512 149/udp AED 512 Emulation Service
Albert G. Broscius <broscius@DSL.CIS.UPENN.EDU>
sql-net 150/tcp SQL-NET
sql-net 150/udp SQL-NET
Martin Picard <<---none--->
hems 151/tcp HEMS
hems 151/udp HEMS
Christopher Tengi <tengi@Princeton.EDU>
bftp 152/tcp Background File Transfer Program
bftp 152/udp Background File Transfer Program
Annette DeSchon <DESCHON@ISI.EDU>
sgmp 153/tcp SGMP
sgmp 153/udp SGMP
Marty Schoffstahl <schoff@NISC.NYSER.NET>
netsc-prod 154/tcp NETSC
netsc-prod 154/udp NETSC
netsc-dev 155/tcp NETSC
netsc-dev 155/udp NETSC
Sergio Heker <heker@JVNCC.CSC.ORG>
sqlsrv 156/tcp SQL Service
sqlsrv 156/udp SQL Service
Craig Rogers <Rogers@ISI.EDU>
knet-cmp 157/tcp KNET/VM Command/Message Protocol
knet-cmp 157/udp KNET/VM Command/Message Protocol
Gary S. Malkin <GMALKIN@XYLOGICS.COM>
pcmail-srv 158/tcp PCMail Server
pcmail-srv 158/udp PCMail Server
Mark L. Lambert <markl@PTT.LCS.MIT.EDU>
nss-routing 159/tcp NSS-Routing
nss-routing 159/udp NSS-Routing
Yakov Rekhter <Yakov@IBM.COM>
sgmp-traps 160/tcp SGMP-TRAPS
sgmp-traps 160/udp SGMP-TRAPS
Marty Schoffstahl <schoff@NISC.NYSER.NET>
snmp 161/tcp SNMP
snmp 161/udp SNMP
snmptrap 162/tcp SNMPTRAP
snmptrap 162/udp SNMPTRAP
Marshall Rose <mrose@dbc.mtview.ca.us>
cmip-man 163/tcp CMIP/TCP Manager
cmip-man 163/udp CMIP/TCP Manager
cmip-agent 164/tcp CMIP/TCP Agent
smip-agent 164/udp CMIP/TCP Agent
Amatzia Ben-Artzi <---none--->
xns-courier 165/tcp Xerox
xns-courier 165/udp Xerox
Susie Armstrong <Armstrong.wbst128@XEROX.COM>
s-net 166/tcp Sirius Systems
s-net 166/udp Sirius Systems
Brian Lloyd <---none--->
namp 167/tcp NAMP
namp 167/udp NAMP
Marty Schoffstahl <schoff@NISC.NYSER.NET>
rsvd 168/tcp RSVD
rsvd 168/udp RSVD
Neil Todd <mcvax!ist.co.uk!neil@UUNET.UU.NET>
send 169/tcp SEND
send 169/udp SEND
William D. Wisner <wisner@HAYES.FAI.ALASKA.EDU>

print-srv 170/tcp Network PostScript
print-srv 170/udp Network PostScript
Brian Reid <reid@DECWRL.DEC.COM>
multiplex 171/tcp Network Innovations Multiplex
multiplex 171/udp Network Innovations Multiplex
cl/1 172/tcp Network Innovations CL/1
cl/1 172/udp Network Innovations CL/1
Kevin DeVault <<---none--->
xyplex-mux 173/tcp Xyplex
xyplex-mux 173/udp Xyplex
Bob Stewart <STEWART@XYPLEX.COM>
mailq 174/tcp MAILQ
mailq 174/udp MAILQ
Rayan Zachariassen <rayan@AI.TORONTO.EDU>
vmnet 175/tcp VMNET
vmnet 175/udp VMNET
Christopher Tengi <tengi@Princeton.EDU>
genrad-mux 176/tcp GENRAD-MUX
genrad-mux 176/udp GENRAD-MUX
Ron Thornton <thornton@qm7501.genrad.com>
xdmcp 177/tcp X Display Manager Control Protocol
xdmcp 177/udp X Display Manager Control Protocol
Robert W. Scheifler <RWS@XX.LCS.MIT.EDU>
nextstep 178/tcp NextStep Window Server
NextStep 178/udp NextStep Window Server
Leo Hourvitz <leo@NEXT.COM>
bgp 179/tcp Border Gateway Protocol
bgp 179/udp Border Gateway Protocol
Kirk Lougheed <LOUGHEED@MATHOM.CISCO.COM>
ris 180/tcp Intergraph
ris 180/udp Intergraph
Dave Buehmann <ingr!daveb@UUNET.UU.NET>
unify 181/tcp Unify
unify 181/udp Unify
Vinod Singh <--none--->
audit 182/tcp Unisys Audit SITP
audit 182/udp Unisys Audit SITP
Gil Greenbaum <gcole@nisd.cam.unisys.com>
ocbinder 183/tcp OCBinder
ocbinder 183/udp OCBinder
ocserver 184/tcp OCServer
ocserver 184/udp OCServer
Jerrilynn Okamura <--none--->
remote-kis 185/tcp Remote-KIS
remote-kis 185/udp Remote-KIS
kis 186/tcp KIS Protocol
kis 186/udp KIS Protocol
Ralph Droms <rdroms@NRI.RESTON.VA.US>
aci 187/tcp Application Communication Interface
aci 187/udp Application Communication Interface
Rick Carlos <rick.ticipa.csc.ti.com>
mumps 188/tcp Plus Five's MUMPS
mumps 188/udp Plus Five's MUMPS
Hokey Stenn <hokey@PLUS5.COM>
qft 189/tcp Queued File Transport
qft 189/udp Queued File Transport
Wayne Schroeder <schroeder@SDS.SDSC.EDU>
gacp 190/tcp Gateway Access Control Protocol
cacp 190/udp Gateway Access Control Protocol
C. Philip Wood <cpw@LANL.GOV>
prospero 191/tcp Prospero Directory Service
prospero 191/udp Prospero Directory Service
B. Clifford Neuman <bcn@isi.edu>
osu-nms 192/tcp OSU Network Monitoring System
osu-nms 192/udp OSU Network Monitoring System
Doug Karl <KARL-D@OSU-20.IRCC.OHIO-STATE.EDU>
srmp 193/tcp Spider Remote Monitoring Protocol
srmp 193/udp Spider Remote Monitoring Protocol
Ted J. Socolofsky <Teds@SPIDER.CO.UK>
irc 194/tcp Internet Relay Chat Protocol
irc 194/udp Internet Relay Chat Protocol

Jarkko Oikarinen <jto@TOLSUN.OULU.FI>
dn6-nlm-aud 195/tcp DNSIX Network Level Module Audit
dn6-nlm-aud 195/udp DNSIX Network Level Module Audit
dn6-smm-red 196/tcp DNSIX Session Mgt Module Audit Redir
dn6-smm-red 196/udp DNSIX Session Mgt Module Audit Redir
Lawrence Lebahn <DIA3@PAXRV-NES.NAVY.MIL>
dls 197/tcp Directory Location Service
dls 197/udp Directory Location Service
dls-mon 198/tcp Directory Location Service Monitor
dls-mon 198/udp Directory Location Service Monitor
Scott Bellew <smb@cs.purdue.edu>
smux 199/tcp SMUX
smux 199/udp SMUX
Marshall Rose <mrose@dbc.mtview.ca.us>
src 200/tcp IBM System Resource Controller
src 200/udp IBM System Resource Controller
Gerald McBrearty <---none--->
at-rtmp 201/tcp AppleTalk Routing Maintenance
at-rtmp 201/udp AppleTalk Routing Maintenance
at-nbp 202/tcp AppleTalk Name Binding
at-nbp 202/udp AppleTalk Name Binding
at-3 203/tcp AppleTalk Unused
at-3 203/udp AppleTalk Unused
at-echo 204/tcp AppleTalk Echo
at-echo 204/udp AppleTalk Echo
at-5 205/tcp AppleTalk Unused
at-5 205/udp AppleTalk Unused
at-zis 206/tcp AppleTalk Zone Information
at-zis 206/udp AppleTalk Zone Information
at-7 207/tcp AppleTalk Unused
at-7 207/udp AppleTalk Unused
at-8 208/tcp AppleTalk Unused
at-8 208/udp AppleTalk Unused
Rob Chandhok <chandhok@gnome.cs.cmu.edu>
tam 209/tcp Trivial Authenticated Mail Protocol
tam 209/udp Trivial Authenticated Mail Protocol
Dan Bernstein <brnstnd@stealth.acf.nyu.edu>
z39.50 210/tcp ANSI Z39.50
z39.50 210/udp ANSI Z39.50
Mark Needleman
<mhnur%uccmvsa.bitnet@cornell.cit.cornell.edu>
914c/g 211/tcp Texas Instruments 914C/G Terminal
914c/g 211/udp Texas Instruments 914C/G Terminal
Bill Harrell <---none--->
anet 212/tcp ATEXSSTR
anet 212/udp ATEXSSTR
Jim Taylor <taylor@heart.epps.kodak.com>
ipx 213/tcp IPX
ipx 213/udp IPX
Don Provan <donp@xlnvax.novell.com>
vmpwscs 214/tcp VM PWSCS
vmpwscs 214/udp VM PWSCS
Dan Shia <dset!shia@uunet.UU.NET>
softpc 215/tcp Insignia Solutions
softpc 215/udp Insignia Solutions
Martyn Thomas <---none--->
atls 216/tcp Access Technology License Server
atls 216/udp Access Technology License Server
Larry DeLuca <henrik@EDDIE.MIT.EDU>
dbase 217/tcp dBASE Unix
dbase 217/udp dBASE Unix
Don Gibson
<sequent!aero!twinsun!ashtate.A-T.COM!dong@uunet.UU.NET>
mpp 218/tcp Netix Message Posting Protocol
mpp 218/udp Netix Message Posting Protocol
Shannon Yeh <yeh@netix.com>
uarps 219/tcp Unisys ARPs
uarps 219/udp Unisys ARPs
Ashok Marwaha <---none--->
imap3 220/tcp Interactive Mail Access Protocol v3
imap3 220/udp Interactive Mail Access Protocol v3

James Rice <RICE@SUMEX-AIM.STANFORD.EDU>
fln-spx 221/tcp Berkeley rlogind with SPX auth
fln-spx 221/udp Berkeley rlogind with SPX auth
rsh-spx 222/tcp Berkeley rshd with SPX auth
rsh-spx 222/udp Berkeley rshd with SPX auth
cdc 223/tcp Certificate Distribution Center
cdc 223/udp Certificate Distribution Center
Kannan Alagappan <kannan@sejour.enet.dec.com>
224-241 Reserved
Jon Postel <postel@isi.edu>
242/tcp Unassigned
242/udp Unassigned
sur-meas 243/tcp Survey Measurement
sur-meas 243/udp Survey Measurement
Dave Clark <ddc@LCS.MIT.EDU>
244/tcp Unassigned
244/udp Unassigned
link 245/tcp LINK
link 245/udp LINK
dsp3270 246/tcp Display Systems Protocol
dsp3270 246/udp Display Systems Protocol
Weldon J. Showalter <Gamma@MINTAKA.DCA.MIL>
247-255 Reserved
Jon Postel <postel@isi.edu>
256-343 Unassigned
pdap 344/tcp Prospero Data Access Protocol
pdap 344/udp Prospero Data Access Protocol
B. Clifford Neuman <bcn@isi.edu>
pawserv 345/tcp Perf Analysis Workbench
pawserv 345/udp Perf Analysis Workbench
zserv 346/tcp Zebra server
zserv 346/udp Zebra server
fatserv 347/tcp Fatmen Server
fatserv 347/udp Fatmen Server
csi-sgwp 348/tcp Cabletron Management Protocol
csi-sgwp 348/udp Cabletron Management Protocol
349-370 Unassigned
clearcase 371/tcp Clearcase
clearcase 371/udp Clearcase
Dave LeBlang <leglang@atria.com>
ulistserv 372/tcp Unix Listserv
ulistserv 372/udp Unix Listserv
Anastasios Kotsikonas <tasos@cs.bu.edu>
legent-1 373/tcp Legent Corporation
legent-1 373/udp Legent Corporation
legent-2 374/tcp Legent Corporation
legent-2 374/udp Legent Corporation
Keith Boyce <---none--->
hassle 375/tcp Hassle
hassle 375/udp Hassle
Reinhard Doelz <doelz@comp.bioz.unibas.ch>
nip 376/tcp Amiga Envoy Network Inquiry Proto
nip 376/udp Amiga Envoy Network Inquiry Proto
Kenneth Dyke <kcd@cbmvax.cbm.commodore.com>
tnETOS 377/tcp NEC Corporation
tnETOS 377/udp NEC Corporation
dsETOS 378/tcp NEC Corporation
dsETOS 378/udp NEC Corporation
Tomoo Fujita <tf@arc.bs1.fc.nec.co.jp>
is99c 379/tcp TIA/EIA/IS-99 modem client
is99c 379/udp TIA/EIA/IS-99 modem client
is99s 380/tcp TIA/EIA/IS-99 modem server
is99s 380/udp TIA/EIA/IS-99 modem server
Frank Quick <fquick@qualcomm.com>
hp-collector 381/tcp hp performance data collector
hp-collector 381/udp hp performance data collector
hp-managed-node 382/tcp hp performance data managed node
hp-managed-node 382/udp hp performance data managed node
hp-alarm-mgr 383/tcp hp performance data alarm manager
hp-alarm-mgr 383/udp hp performance data alarm manager
Frank Blakely <frankb@hpptc16.rose.hp.com>

arns 384/tcp A Remote Network Server System
arns 384/udp A Remote Network Server System
David Hornsby <djh@munnari.OZ.AU>
ibm-app 385/tcp IBM Application
ibm-app 385/tcp IBM Application
Lisa Tomita <---none--->
asa 386/tcp ASA Message Router Object Def.
asa 386/udp ASA Message Router Object Def.
Steve Laitinen <laitinen@brutus.aa.ab.com>
aurp 387/tcp Appletalk Update-Based Routing Pro.
aurp 387/udp Appletalk Update-Based Routing Pro.
Chris Ranch <cranch@novell.com>
unidata-ldm 388/tcp Unidata LDM Version 4
unidata-ldm 388/udp Unidata LDM Version 4
Glenn Davis <davis@unidata.ucar.edu>
ldap 389/tcp Lightweight Directory Access Protocol
ldap 389/udp Lightweight Directory Access Protocol
Tim Howes <Tim.Howes@terminator.cc.umich.edu>
uis 390/tcp UIS
uis 390/udp UIS
Ed Barron <---none--->
synotics-relay 391/tcp SynOptics SNMP Relay Port
synotics-relay 391/udp SynOptics SNMP Relay Port
synotics-broker 392/tcp SynOptics Port Broker Port
synotics-broker 392/udp SynOptics Port Broker Port
Illan Raab <iraab@synoptics.com>
dis 393/tcp Data Interpretation System
dis 393/udp Data Interpretation System
Paul Stevens <pstevens@chinacat.Metaphor.COM>
embl-ndt 394/tcp EMBL Nucleic Data Transfer
embl-ndt 394/udp EMBL Nucleic Data Transfer
Peter Gad <peter@bmc.uu.se>
netcp 395/tcp NETscout Control Protocol
netcp 395/udp NETscout Control Protocol
Anil Singhal <---none--->
netware-ip 396/tcp Novell Netware over IP
netware-ip 396/udp Novell Netware over IP
mptn 397/tcp Multi Protocol Trans. Net.
mptn 397/udp Multi Protocol Trans. Net.
Soumitra Sarkar <sarkar@vnet.ibm.com>
kryptolan 398/tcp Kryptolan
kryptolan 398/udp Kryptolan
Peter de Laval <pdl@sectra.se>
399/tcp Unassigned
399/udp Unassigned
work-sol 400/tcp Workstation Solutions
work-sol 400/udp Workstation Solutions
Jim Ward <jimw@worksta.com>
ups 401/tcp Uninterruptible Power Supply
ups 401/udp Uninterruptible Power Supply
Guenther Seybold <gs@hrz.th-darmstadt.de>
genie 402/tcp Genie Protocol
genie 402/udp Genie Protocol
Mark Hankin <---none--->
decap 403/tcp decap
decap 403/udp decap
nced 404/tcp nced
nced 404/udp nced
ncld 405/tcp ncld
ncld 405/udp ncld
Richard Jones <---none--->
imsp 406/tcp Interactive Mail Support Protocol
imsp 406/udp Interactive Mail Support Protocol
John Myers <jgm+@cmu.edu>
timbuktu 407/tcp Timbuktu
timbuktu 407/udp Timbuktu
Marc Epard <marc@waygate.farallon.com>
prm-sm 408/tcp Prospero Resource Manager Sys. Man.
prm-sm 408/udp Prospero Resource Manager Sys. Man.
prm-nm 409/tcp Prospero Resource Manager Node Man.
prm-nm 409/udp Prospero Resource Manager Node Man.

B. Clifford Neuman <bcn@isi.edu>
decladebug 410/tcp DECLadebug Remote Debug Protocol
decladebug 410/udp DECLadebug Remote Debug Protocol
Anthony Berent <berent@rdgeng.enet.dec.com>
rmt 411/tcp Remote MT Protocol
rmt 411/udp Remote MT Protocol
Peter Eriksson <pen@lysator.liu.se>
synoptics-trap 412/tcp Trap Convention Port
synoptics-trap 412/udp Trap Convention Port
Illan Raab <iraab@synoptics.com>
smsp 413/tcp SMSP
smsp 413/udp SMSP
infoseek 414/tcp InfoSeek
infoseek 414/udp InfoSeek
Steve Kirsch <stk@frame.com>
bnet 415/tcp BNet
bnet 415/udp BNet
Jim Mertz <JMertz+RV09@rvdc.unisys.com>
silverplatter 416/tcp Silverplatter
silverplatter 416/udp Silverplatter
Peter Ciuffetti <petec@silverplatter.com>
onmux 417/tcp Onmux
onmux 417/udp Onmux
Stephen Hanna <hanna@world.std.com>
hyper-g 418/tcp Hyper-G
hyper-g 418/udp Hyper-G
Frank Kappe <fkappe@iicm.tu-graz.ac.at>
ariel1 419/tcp Ariel
ariel1 419/udp Ariel
Jonathan Lavigne <BL.JPL@RLG.Stanford.EDU>
smpte 420/tcp SMPTE
smpte 420/udp SMPTE
Si Becker <71362.22@CompuServe.COM>
ariel2 421/tcp Ariel
ariel2 421/udp Ariel
ariel3 422/tcp Ariel
ariel3 422/udp Ariel
Jonathan Lavigne <BL.JPL@RLG.Stanford.EDU>
opc-job-start 423/tcp IBM Operations Planning and Control Start
opc-job-start 423/udp IBM Operations Planning and Control Start
opc-job-track 424/tcp IBM Operations Planning and Control Track
opc-job-track 424/udp IBM Operations Planning and Control Track
Conny Larsson <cocke@VNET.IBM.COM>
icad-el 425/tcp ICAD
icad-el 425/udp ICAD
Larry Stone <lcs@icad.com>
smartsdp 426/tcp smartsdp
smartsdp 426/udp smartsdp
Alexander Dupuy <dupuy@smarts.com>
svrloc 427/tcp Server Location
svrloc 427/udp Server Location
<veizades@ftp.com>
ocs_cmu 428/tcp OCS_CMU
ocs_cmu 428/udp OCS_CMU
ocs_amu 429/tcp OCS_AMU
ocs_amu 429/udp OCS_AMU
Florence Wyman <wyman@peabody.plk.af.mil>
utmpsd 430/tcp UTMPSD
utmpsd 430/udp UTMPSD
utmpcd 431/tcp UTMPCD
utmpcd 431/udp UTMPCD
iasd 432/tcp IASD
iasd 432/udp IASD
Nir Baroz <nbaroz@encore.com>
nnsp 433/tcp NNSP
nnsp 433/udp NNSP
Rob Robertson <rob@gangrene.berkeley.edu>
mobileip-agent 434/tcp MobileIP-Agent
mobileip-agent 434/udp MobileIP-Agent
mobilip-mn 435/tcp MobilIP-MN
mobilip-mn 435/udp MobilIP-MN

Kannan Alagappan <kannan@sejour.lkg.dec.com>
dna-cml 436/tcp DNA-CML
dna-cml 436/udp DNA-CML
Dan Flowers <flowers@smaug.lkg.dec.com>
comscm 437/tcp comscm
comscm 437/udp comscm
Jim Teague <teague@zso.dec.com>
dsfgw 438/tcp dsfgw
dsfgw 438/udp dsfgw
Andy McKeen <mckeen@osf.org>
dasp 439/tcp dasp Thomas Obermair
dasp 439/udp dasp tommy@inlab.m.eunet.de
Thomas Obermair <tommy@inlab.m.eunet.de>
sgcp 440/tcp sgcp
sgcp 440/udp sgcp
Marshall Rose <mrose@dbc.mtview.ca.us>
decvms-sysmgt 441/tcp decvms-sysmgt
decvms-sysmgt 441/udp decvms-sysmgt
Lee Barton <barton@star.enet.dec.com>
cvc_hostd 442/tcp cvc_hostd
cvc_hostd 442/udp cvc_hostd
Bill Davidson <billd@equalizer.cray.com>
https 443/tcp https MCom
https 443/udp https MCom
Kipp E.B. Hickman <kipp@mcom.com>
snpp 444/tcp Simple Network Paging Protocol
snpp 444/udp Simple Network Paging Protocol
[RFC1568]
microsoft-ds 445/tcp Microsoft-DS
microsoft-ds 445/udp Microsoft-DS
Arnold Miller <arnoldm@microsoft.com>
ddm-rdb 446/tcp DDM-RDB
ddm-rdb 446/udp DDM-RDB
ddm-dfm 447/tcp DDM-RFM
ddm-dfm 447/udp DDM-RFM
ddm-byte 448/tcp DDM-BYTE
ddm-byte 448/udp DDM-BYTE
Jan David Fisher <jdfisher@VNET.IBM.COM>
as-servermap 449/tcp AS Server Mapper
as-servermap 449/udp AS Server Mapper
Barbara Foss <BGFOSS@rchvmv.vnet.ibm.com>
tserver 450/tcp TServer
tserver 450/udp TServer
Harvey S. Schultz <hss@mtgzfs3.mt.att.com>
451-511 Unassigned
exec 512/tcp remote process execution;
authentication performed using
passwords and UNIX loppgin names
biff 512/udp used by mail system to notify users
of new mail received; currently
receives messages only from
processes on the same machine
login 513/tcp remote login a la telnet;
automatic authentication performed
based on priviledged port numbers
and distributed data bases which
identify "authentication domains"
who 513/udp maintains data bases showing who's
logged in to machines on a local
net and the load average of the
machine
cmd 514/tcp like exec, but automatic
authentication is performed as for
login server
syslog 514/udp
printer 515/tcp spooler
printer 515/udp spooler
516/tcp Unassigned
516/udp Unassigned
talk 517/tcp like tenex link, but across
machine - unfortunately, doesn't

use link protocol (this is actually
just a rendezvous port from which a
tcp connection is established)
talk 517/udp like tenex link, but across
machine - unfortunately, doesn't
use link protocol (this is actually
just a rendezvous port from which a
 tcp connection is established)
ntalk 518/tcp
ntalk 518/udp
utime 519/tcp unixtime
utime 519/udp unixtime
efs 520/tcp extended file name server
router 520/udp local routing process (on site);
uses variant of Xerox NS routing
information protocol
521-524 Unassigned
timed 525/tcp timeserver
timed 525/udp timeserver
tempo 526/tcp newdate
tempo 526/udp newdate
527-529 Unassigned
courier 530/tcp rpc
courier 530/udp rpc
conference 531/tcp chat
conference 531/udp chat
netnews 532/tcp readnews
netnews 532/udp readnews
netwall 533/tcp for emergency broadcasts
netwall 533/udp for emergency broadcasts
534-538 Unassigned
apertus-ldp 539/tcp Apertus Technologies Load Determination
apertus-ldp 539/udp Apertus Technologies Load Determination
uucp 540/tcp uucpd
uucp 540/udp uucpd
uucp-rlogin 541/tcp uucp-rlogin Stuart Lynne
uucp-rlogin 541/udp uucp-rlogin sl@wimsey.com
542/tcp Unassigned
542/udp Unassigned
klogin 543/tcp
klogin 543/udp
kshell 544/tcp krcmd
kshell 544/udp krcmd
545-549 Unassigned
new-rwho 550/tcp new-who
new-rwho 550/udp new-who
551-555 Unassigned
dsf 555/tcp
dsf 555/udp
remotefs 556/tcp rfs server
remotefs 556/udp rfs server
557-559 Unassigned
rmonitor 560/tcp rmonitord
rmonitor 560/udp rmonitord
monitor 561/tcp
monitor 561/udp
chshell 562/tcp chcmd
chshell 562/udp chcmd
563/tcp Unassigned
563/udp Unassigned
9pfs 564/tcp plan 9 file service
9pfs 564/udp plan 9 file service
whoami 565/tcp whoami
whoami 565/udp whoami
566-569 Unassigned
meter 570/tcp demon
meter 570/udp demon
meter 571/tcp udemon
meter 571/udp udemon
572-599 Unassigned
ipcserver 600/tcp Sun IPC server

ipcserver 600/udp Sun IPC server
nqs 607/tcp nqs
nqs 607/udp nqs
urm 606/tcp Cray Unified Resource Manager
urm 606/udp Cray Unified Resource Manager
Bill Schiefelbein <schief@aspen.cray.com>
sift-uft 608/tcp Sender-Initiated/Unsolicited File Transfer
sift-uft 608/udp Sender-Initiated/Unsolicited File Transfer
Rick Troth <troth@rice.edu>
npmp-trap 609/tcp npmp-trap
npmp-trap 609/udp npmp-trap
npmp-local 610/tcp npmp-local
npmp-local 610/udp npmp-local
npmp-gui 611/tcp npmp-gui
npmp-gui 611/udp npmp-gui
John Barnes <jbarnes@crl.com>
ginad 634/tcp ginad
ginad 634/udp ginad
Mark Crother <mark@eis.calstate.edu>
mdqs 666/tcp
mdqs 666/udp
doom 666/tcp doom Id Software
doom 666/tcp doom Id Software
<ddt@idcube.idsoftware.com>
elcsd 704/tcp errlog copy/server daemon
elcsd 704/udp errlog copy/server daemon
#
entrustmanager 709/tcp EntrustManager
entrustmanager 709/udp EntrustManager
Peter Whittaker <pww@bnr.ca>
netviewdm1 729/tcp IBM NetView DM/6000 Server/Client
netviewdm1 729/udp IBM NetView DM/6000 Server/Client
netviewdm2 730/tcp IBM NetView DM/6000 send/tcp
netviewdm2 730/udp IBM NetView DM/6000 send/tcp
netviewdm3 731/tcp IBM NetView DM/6000 receive/tcp
netviewdm3 731/udp IBM NetView DM/6000 receive/tcp
Philippe Binet (phbinet@vnet.IBM.COM)
netgw 741/tcp netGW
netgw 741/udp netGW
netrcs 742/tcp Network based Rev. Cont. Sys.
netrcs 742/udp Network based Rev. Cont. Sys.
Gordon C. Galligher <gorpong@ping.chi.il.us>
flexlm 744/tcp Flexible License Manager
flexlm 744/udp Flexible License Manager
Matt Christiano
<globes@matt@oliveb.atc.olivetti.com>
fujitsu-dev 747/tcp Fujitsu Device Control
fujitsu-dev 747/udp Fujitsu Device Control
ris-cm 748/tcp Russell Info Sci Calendar Manager
ris-cm 748/udp Russell Info Sci Calendar Manager
kerberos-adm 749/tcp kerberos administration
kerberos-adm 749/udp kerberos administration
rfile 750/tcp
loadav 750/udp
pump 751/tcp
pump 751/udp
qrh 752/tcp
qrh 752/udp
rrh 753/tcp
rrh 753/udp
tell 754/tcp send
tell 754/udp send
nlogin 758/tcp
nlogin 758/udp
con 759/tcp
con 759/udp
ns 760/tcp
ns 760/udp
rxe 761/tcp
rxe 761/udp
quotad 762/tcp

quotad 762/udp
cycleserv 763/tcp
cycleserv 763/udp
omserv 764/tcp
omserv 764/udp
webster 765/tcp
webster 765/udp
phonebook 767/tcp phone
phonebook 767/udp phone
vid 769/tcp
vid 769/udp
cadlock 770/tcp
cadlock 770/udp
rtip 771/tcp
rtip 771/udp
cycleserv2 772/tcp
cycleserv2 772/udp
submit 773/tcp
notify 773/udp
rpasswd 774/tcp
acmaint_dbd 774/udp
entomb 775/tcp
acmaint_transd 775/udp
wpages 776/tcp
wpages 776/udp
wpgs 780/tcp
wpgs 780/udp
concert 786/tcp Concert
concert 786/udp Concert
Josyula R. Rao <jrrao@watson.ibm.com>
mdbs_daemon 800/tcp
mdbs_daemon 800/udp
device 801/tcp
device 801/udp
xtreelic 996/tcp Central Point Software
xtreelic 996/udp Central Point Software
Dale Cabell <dacabell@smtp.xtree.com>
maitrd 997/tcp
maitrd 997/udp
busboy 998/tcp
puparp 998/udp
garcon 999/tcp
applix 999/udp Applix ac
puprouter 999/tcp
puprouter 999/udp
cadlock 1000/tcp
ock 1000/udp
 1023/tcp Reserved
 1024/udp Reserved
IANA <iana@isi.edu>

REGISTERED PORT NUMBERS

The Registered Ports are not controlled by the IANA and on most
systems can be used by ordinary user processes or programs executed by
ordinary users.

Ports are used in the TCP [RFC793] to name the ends of logical
connections which carry long term conversations. For the purpose of
providing services to unknown callers, a service contact port is
defined. This list specifies the port used by the server process as
its contact port. While the IANA can not control uses of these ports
it does register or list uses of these ports as a convienence to the
community.

To the extent possible, these same port assignments are used with the
UDP [RFC768].

The Registered Ports are in the range 1024-65535.

Port Assignments:

Keyword Decimal Description References
------- ------- ----------- ----------
 1024/tcp Reserved
 1024/udp Reserved
IANA <iana@isi.edu>
blackjack 1025/tcp network blackjack
blackjack 1025/udp network blackjack
iad1 1030/tcp BBN IAD
iad1 1030/udp BBN IAD
iad2 1031/tcp BBN IAD
iad2 1031/udp BBN IAD
iad3 1032/tcp BBN IAD
iad3 1032/udp BBN IAD
Andy Malis <malis_a@timeplex.com>
instl_boots 1067/tcp Installation Bootstrap Proto. Serv.
instl_boots 1067/udp Installation Bootstrap Proto. Serv.
instl_bootc 1068/tcp Installation Bootstrap Proto. Cli.
instl_bootc 1068/udp Installation Bootstrap Proto. Cli.
David Arko <<darko@hpfcrn.fc.hp.com>
socks 1080/tcp Socks
socks 1080/udp Socks
Ying-Da Lee <ylee@syl.dl.nec.com
ansoft-lm-1 1083/tcp Anasoft License Manager
ansoft-lm-1 1083/udp Anasoft License Manager
ansoft-lm-2 1084/tcp Anasoft License Manager
ansoft-lm-2 1084/udp Anasoft License Manager
nfa 1155/tcp Network File Access
nfa 1155/udp Network File Access
James Powell <james@mailhost.unidata.com>
nerv 1222/tcp SNI R&D network
nerv 1222/udp SNI R&D network
Martin Freiss <freiss.pad@sni.de>
hermes 1248/tcp
hermes 1248/udp
alta-ana-lm 1346/tcp Alta Analytics License Manager
alta-ana-lm 1346/udp Alta Analytics License Manager
bbn-mmc 1347/tcp multi media conferencing
bbn-mmc 1347/udp multi media conferencing
bbn-mmx 1348/tcp multi media conferencing
bbn-mmx 1348/udp multi media conferencing
sbook 1349/tcp Registration Network Protocol
sbook 1349/udp Registration Network Protocol
editbench 1350/tcp Registration Network Protocol
editbench 1350/udp Registration Network Protocol
Simson L. Garfinkel <simsong@next.cambridge.ma.us>
equationbuilder 1351/tcp Digital Tool Works (MIT)
equationbuilder 1351/udp Digital Tool Works (MIT)
Terrence J. Talbot <lexcube!tjt@bu.edu>
lotusnote 1352/tcp Lotus Note
lotusnote 1352/udp Lotus Note
Greg Pflaum <iris.com!Greg_Pflaum@uunet.uu.net>
relief 1353/tcp Relief Consulting
relief 1353/udp Relief Consulting
John Feiler <relief!jjfeiler@uu2.psi.com>
rightbrain 1354/tcp RightBrain Software
rightbrain 1354/udp RightBrain Software
Glenn Reid <glann@rightbrain.com>
intuitive edge 1355/tcp Intuitive Edge
intuitive edge 1355/udp Intuitive Edge
Montgomery Zukowski
<monty@nextnorth.acs.ohio-state.edu>
cuillamartin 1356/tcp CuillaMartin Company
cuillamartin 1356/udp CuillaMartin Company
pegboard 1357/tcp Electronic PegBoard
pegboard 1357/udp Electronic PegBoard
Chris Cuilla
<balr!vpnet!cuilla!chris@clout.chi.il.us>

connlcli 1358/tcp CONNLCLI
connlcli 1358/udp CONNLCLI
ftsrv 1359/tcp FTSRV
ftsrv 1359/udp FTSRV
Ines Homem de Melo <sidinf@brfapesp.bitnet>
mimer 1360/tcp MIMER
mimer 1360/udp MIMER
Per Schroeder <Per.Schroder@mimer.se>
linx 1361/tcp LinX
linx 1361/udp LinX
Steffen Schilke <---none--->
timeflies 1362/tcp TimeFlies
timeflies 1362/udp TimeFlies
Doug Kent <mouthers@slugg@nwnexus.wa.com>
ndm-requester 1363/tcp Network DataMover Requester
ndm-requester 1363/udp Network DataMover Requester
ndm-server 1364/tcp Network DataMover Server
ndm-server 1364/udp Network DataMover Server
Toshio Watanabe
<watanabe@godzilla.rsc.spdd.ricoh.co.j>
adapt-sna 1365/tcp Network Software Associates
adapt-sna 1365/udp Network Software Associates
Jeffery Chiao <714-768-401>
netware-csp 1366/tcp Novell NetWare Comm Service Platform
netware-csp 1366/udp Novell NetWare Comm Service Platform
Laurie Lindsey <llindsey@novell.com>
dcs 1367/tcp DCS
dcs 1367/udp DCS
Stefan Siebert <ssiebert@dcs.de>
screencast 1368/tcp ScreenCast
screencast 1368/udp ScreenCast
Bill Tschumy <other!bill@uunet.UU.NET>
gv-us 1369/tcp GlobalView to Unix Shell
gv-us 1369/udp GlobalView to Unix Shell
us-gv 1370/tcp Unix Shell to GlobalView
us-gv 1370/udp Unix Shell to GlobalView
Makoto Mita <mita@ssdev.ksp.fujixerox.co.jp>
fc-cli 1371/tcp Fujitsu Config Protocol
fc-cli 1371/udp Fujitsu Config Protocol
fc-ser 1372/tcp Fujitsu Config Protocol
fc-ser 1372/udp Fujitsu Config Protocol
Ryuichi Horie <horie@spad.sysrap.cs.fujitsu.co.jp>
chromagrafx 1373/tcp Chromagrafx
chromagrafx 1373/udp Chromagrafx
Mike Barthelemy <msb@chromagrafx.com>
molly 1374/tcp EPI Software Systems
molly 1374/udp EPI Software Systems
Jim Vlcek <vlcek@epimbe.com>
bytex 1375/tcp Bytex
bytex 1375/udp Bytex
Mary Ann Burt <bytex!ws054!maryann@uunet.UU.NET>
ibm-pps 1376/tcp IBM Person to Person Software
ibm-pps 1376/udp IBM Person to Person Software
Simon Phipps <sphipps@vnet.ibm.com>
cichlid 1377/tcp Cichlid License Manager
cichlid 1377/udp Cichlid License Manager
Andy Burgess <aab@cichlid.com>
elan 1378/tcp Elan License Manager
elan 1378/udp Elan License Manager
Ken Greer <kg@elan.com>
dbreporter 1379/tcp Integrity Solutions
dbreporter 1379/udp Integrity Solutions
Tim Dawson <tdawson%mspboss@uunet.UU.NET>
telesis-licman 1380/tcp Telesis Network License Manager
telesis-licman 1380/udp Telesis Network License Manager
Karl Schendel, Jr. <wiz@telesis.com>
apple-licman 1381/tcp Apple Network License Manager
apple-licman 1381/udp Apple Network License Manager
Earl Wallace <earlw@apple.com>
udt_os 1382/tcp
udt_os 1382/udp

gwha 1383/tcp GW Hannaway Network License Manager
gwha 1383/udp GW Hannaway Network License Manager
J. Gabriel Foster <fop@gwha.com>
os-licman 1384/tcp Objective Solutions License Manager
os-licman 1384/udp Objective Solutions License Manager
Donald Cornwell <don.cornwell@objective.com>
atex_elmd 1385/tcp Atex Publishing License Manager
atex_elmd 1385/udp Atex Publishing License Manager
Brett Sorenson <bcs@atex.com>
checksum 1386/tcp CheckSum License Manager
checksum 1386/udp CheckSum License Manager
Andreas Glocker <glocker@sirius.com>
cadsi-lm 1387/tcp Computer Aided Design Software Inc LM
cadsi-lm 1387/udp Computer Aided Design Software Inc LM
Sulistio Muljadi
objective-dbc 1388/tcp Objective Solutions DataBase Cache
objective-dbc 1388/udp Objective Solutions DataBase Cache
Donald Cornwell
iclpv-dm 1389/tcp Document Manager
iclpv-dm 1389/udp Document Manager
iclpv-sc 1390/tcp Storage Controller
iclpv-sc 1390/udp Storage Controller
iclpv-sas 1391/tcp Storage Access Server
iclpv-sas 1391/udp Storage Access Server
iclpv-pm 1392/tcp Print Manager
iclpv-pm 1392/udp Print Manager
iclpv-nls 1393/tcp Network Log Server
iclpv-nls 1393/udp Network Log Server
iclpv-nlc 1394/tcp Network Log Client
iclpv-nlc 1394/udp Network Log Client
iclpv-wsm 1395/tcp PC Workstation Manager software
iclpv-wsm 1395/udp PC Workstation Manager software
A.P. Hobson <A.P.Hobson@bra0112.wins.icl.co.uk>
dvl-activemail 1396/tcp DVL Active Mail
dvl-activemail 1396/udp DVL Active Mail
audio-activmail 1397/tcp Audio Active Mail
audio-activmail 1397/udp Audio Active Mail
video-activmail 1398/tcp Video Active Mail
video-activmail 1398/udp Video Active Mail
Ehud Shapiro <udi@wisdon.weizmann.ac.il>
cadkey-licman 1399/tcp Cadkey License Manager
cadkey-licman 1399/udp Cadkey License Manager
cadkey-tablet 1400/tcp Cadkey Tablet Daemon
cadkey-tablet 1400/udp Cadkey Tablet Daemon
Joe McCollough <joe@cadkey.com>
goldleaf-licman 1401/tcp Goldleaf License Manager
goldleaf-licman 1401/udp Goldleaf License Manager
John Fox <---none--->
prm-sm-np 1402/tcp Prospero Resource Manager
prm-sm-np 1402/udp Prospero Resource Manager
prm-nm-np 1403/tcp Prospero Resource Manager
prm-nm-np 1403/udp Prospero Resource Manager
B. Clifford Neuman <bcn@isi.edu>
igi-lm 1404/tcp Infinite Graphics License Manager
igi-lm 1404/udp Infinite Graphics License Manager
ibm-res 1405/tcp IBM Remote Execution Starter
ibm-res 1405/udp IBM Remote Execution Starter
netlabs-lm 1406/tcp NetLabs License Manager
netlabs-lm 1406/udp NetLabs License Manager
dbsa-lm 1407/tcp DBSA License Manager
dbsa-lm 1407/udp DBSA License Manager
Scott Shattuck <ss@dbsa.com>
sophia-lm 1408/tcp Sophia License Manager
sophia-lm 1408/udp Sophia License Manager
Eric Brown <sst!emerald!eric@uunet.UU.net>
here-lm 1409/tcp Here License Manager
here-lm 1409/udp Here License Manager
David Ison <here@dialup.oar.net>
hiq 1410/tcp HiQ License Manager
hiq 1410/udp HiQ License Manager
Rick Pugh <rick@bilmillennium.com>

af 1411/tcp AudioFile
af 1411/udp AudioFile
Jim Gettys <jg@crl.dec.com>
innosys 1412/tcp InnoSys
innosys 1412/udp InnoSys
innosys-acl 1413/tcp Innosys-ACL
innosys-acl 1413/udp Innosys-ACL
Eric Welch <--none--->
ibm-mqseries 1414/tcp IBM MQSeries
ibm-mqseries 1414/udp IBM MQSeries
Roger Meli <rmmeli%winvmd@vnet.ibm.com>
dbstar 1415/tcp DBStar
dbstar 1415/udp DBStar
Jeffrey Millman <jcm@dbstar.com>
novell-lu6.2 1416/tcp Novell LU6.2
novell-lu6.2 1416/udp Novell LU6.2
Peter Liu <--none--->
timbuktu-srv1 1417/tcp Timbuktu Service 1 Port
timbuktu-srv1 1417/tcp Timbuktu Service 1 Port
timbuktu-srv2 1418/tcp Timbuktu Service 2 Port
timbuktu-srv2 1418/udp Timbuktu Service 2 Port
timbuktu-srv3 1419/tcp Timbuktu Service 3 Port
timbuktu-srv3 1419/udp Timbuktu Service 3 Port
timbuktu-srv4 1420/tcp Timbuktu Service 4 Port
timbuktu-srv4 1420/udp Timbuktu Service 4 Port
Marc Epard <marc@waygate.farallon.com>
gandalf-lm 1421/tcp Gandalf License Manager
gandalf-lm 1421/udp Gandalf License Manager
gilmer@gandalf.ca
autodesk-lm 1422/tcp Autodesk License Manager
autodesk-lm 1422/udp Autodesk License Manager
David Ko <dko@autodesk.com>
essbase 1423/tcp Essbase Arbor Software
essbase 1423/udp Essbase Arbor Software
hybrid 1424/tcp Hybrid Encryption Protocol
hybrid 1424/udp Hybrid Encryption Protocol
Howard Hart <hch@hybrid.com>
zion-lm 1425/tcp Zion Software License Manager
zion-lm 1425/udp Zion Software License Manager
David Ferrero <david@zion.com>
sas-1 1426/tcp Satellite-data Acquisition System 1
sas-1 1426/udp Satellite-data Acquisition System 1
Bill Taylor <sais@ssec.wisc.edu>
mloadd 1427/tcp mloadd monitoring tool
mloadd 1427/udp mloadd monitoring tool
Bob Braden <braden@isi.edu>
informatik-lm 1428/tcp Informatik License Manager
informatik-lm 1428/udp Informatik License Manager
Harald Schlangmann
<schlangm@informatik.uni-muenchen.de>
nms 1429/tcp Hypercom NMS
nms 1429/udp Hypercom NMS
tpdu 1430/tcp Hypercom TPDU
tpdu 1430/udp Hypercom TPDU
Noor Chowdhury <noor@hypercom.com>
rgtp 1431/tcp Reverse Gosip Transport
rgtp 1431/udp Reverse Gosip Transport
<iwj10@cl.cam-orl.co.uk>
blueberry-lm 1432/tcp Blueberry Software License Manager
blueberry-lm 1432/udp Blueberry Software License Manager
Steve Beigel <ublueb!steve@uunet.uu.net>
ms-sql-s 1433/tcp Microsoft-SQL-Server
ms-sql-s 1433/udp Microsoft-SQL-Server
ms-sql-m 1434/tcp Microsoft-SQL-Monitor
ms-sql-m 1434/udp Microsoft-SQL-Monitor
Peter Hussey <peterhus@microsoft.com>
ibm-cics 1435/tcp IBM CISC
ibm-cics 1435/udp IBM CISC
Geoff Meacock <gbibmswl@ibmmail.COM>
sas-2 1436/tcp Satellite-data Acquisition System 2
sas-2 1436/udp Satellite-data Acquisition System 2

Bill Taylor <sais@ssec.wisc.edu>
tabula 1437/tcp Tabula
tabula 1437/udp Tabula
Marcelo Einhorn
<KGUNE%HUJIVM1.bitnet@taunivm.tau.ac.il>
eicon-server 1438/tcp Eicon Security Agent/Server
eicon-server 1438/udp Eicon Security Agent/Server
eicon-x25 1439/tcp Eicon X25/SNA Gateway
eicon-x25 1439/udp Eicon X25/SNA Gateway
eicon-slp 1440/tcp Eicon Service Location Protocol
eicon-slp 1440/udp Eicon Service Location Protocol
Pat Calhoun <CALHOUN@admin.eicon.qc.ca>
cadis-1 1441/tcp Cadis License Management
cadis-1 1441/udp Cadis License Management
cadis-2 1442/tcp Cadis License Management
cadis-2 1442/udp Cadis License Management
Todd Wichers <twichers@csn.org>
ies-lm 1443/tcp Integrated Engineering Software
ies-lm 1443/udp Integrated Engineering Software
David Tong <David_Tong@integrated.mb.ca>
marcam-lm 1444/tcp Marcam License Management
marcam-lm 1444/udp Marcam License Management
Therese Hunt <hunt@marcam.com>
proxima-lm 1445/tcp Proxima License Manager
proxima-lm 1445/udp Proxima License Manager
ora-lm 1446/tcp Optical Research Associates License Manager
ora-lm 1446/udp Optical Research Associates License Manager
apri-lm 1447/tcp Applied Parallel Research LM
apri-lm 1447/udp Applied Parallel Research LM
Jim Dillon <jed@apri.com>
oc-lm 1448/tcp OpenConnect License Manager
oc-lm 1448/udp OpenConnect License Manager
Sue Barnhill <snb@oc.com>
peport 1449/tcp PEport
peport 1449/udp PEport
Qentin Neill <quentin@ColumbiaSC.NCR.COM>
dwf 1450/tcp Tandem Distributed Workbench Facility
dwf 1450/udp Tandem Distributed Workbench Facility
Mike Bert <BERG_MIKE@tandem.com>
infoman 1451/tcp IBM Information Management
infoman 1451/udp IBM Information Management
Karen Burns <---none--->
gtegsc-lm 1452/tcp GTE Government Systems License Man
gtegsc-lm 1452/udp GTE Government Systems License Man
Mike Gregory <Gregory_Mike@msmail.iipo.gtegsc.com>
genie-lm 1453/tcp Genie License Manager
genie-lm 1453/udp Genie License Manager
Paul Applegate <p.applegate2@genie.geis.com>
interhdl_elmd 1454/tcp interHDL License Manager
interhdl_elmd 1454/tcp interHDL License Manager
Eli Sternheim eli@interhdl.com
esl-lm 1455/tcp ESL License Manager
esl-lm 1455/udp ESL License Manager
Abel Chou <abel@willy.esl.com>
dca 1456/tcp DCA
dca 1456/udp DCA
Jeff Garbers <jgarbers@netcom.com>
valisys-lm 1457/tcp Valisys License Manager
valisys-lm 1457/udp Valisys License Manager
Leslie Lincoln <leslie_lincoln@valisys.com>
nrcabq-lm 1458/tcp Nichols Research Corp.
nrcabq-lm 1458/udp Nichols Research Corp.
Howard Cole <hcole@tumbleweed.nrcabq.com>
proshare1 1459/tcp Proshare Notebook Application
proshare1 1459/udp Proshare Notebook Application
proshare2 1460/tcp Proshare Notebook Application
proshare2 1460/udp Proshare Notebook Application
Robin Kar <Robin_Kar@ccm.hf.intel.com>
ibm_wrless_lan 1461/tcp IBM Wireless LAN
ibm_wrless_lan 1461/udp IBM Wireless LAN
<flanne@vnet.IBM.COM>

world-lm 1462/tcp World License Manager
world-lm 1462/udp World License Manager
Michael S Amirault <ambi@world.std.com>
nucleus 1463/tcp Nucleus
nucleus 1463/udp Nucleus
Venky Nagar <venky@fafner.Stanford.EDU>
msl_lmd 1464/tcp MSL License Manager
msl_lmd 1464/udp MSL License Manager
Matt Timmermans
pipes 1465/tcp Pipes Platform
pipes 1465/udp Pipes Platform mfarlin@peerlogic.com
Mark Farlin <mfarlin@peerlogic.com>
oceansoft-lm 1466/tcp Ocean Software License Manager
oceansoft-lm 1466/udp Ocean Software License Manager
Randy Leonard <randy@oceansoft.com>
csdmbase 1467/tcp CSDMBASE
csdmbase 1467/udp CSDMBASE
csdm 1468/tcp CSDM
csdm 1468/udp CSDM
Robert Stabl <stabl@informatik.uni-muenchen.de>
aal-lm 1469/tcp Active Analysis Limited License Manager
aal-lm 1469/udp Active Analysis Limited License Manager
David Snocken +44 (71)437-7009
uaiact 1470/tcp Universal Analytics
uaiact 1470/udp Universal Analytics
Mark R. Ludwig <Mark-Ludwig@uai.com>
csdmbase 1471/tcp csdmbase
csdmbase 1471/udp csdmbase
csdm 1472/tcp csdm
csdm 1472/udp csdm
Robert Stabl <stabl@informatik.uni-muenchen.de>
openmath 1473/tcp OpenMath
openmath 1473/udp OpenMath
Garth Mayville <mayville@maplesoft.on.ca>
telefinder 1474/tcp Telefinder
telefinder 1474/udp Telefinder
Jim White <Jim_White@spiderisland.com>
taligent-lm 1475/tcp Taligent License Manager
taligent-lm 1475/udp Taligent License Manager
Mark Sapsford <Mark_Sapsford@@taligent.com>
clvm-cfg 1476/tcp clvm-cfg
clvm-cfg 1476/udp clvm-cfg
Eric Soderberg <seric@cup.hp.com>
ms-sna-server 1477/tcp ms-sna-server
ms-sna-server 1477/udp ms-sna-server
ms-sna-base 1478/tcp ms-sna-base
ms-sna-base 1478/udp ms-sna-base
Gordon Mangione <gordm@microsoft.com>
dberegister 1479/tcp dberegister
dberegister 1479/udp dberegister
Brian Griswold <brian@dancingbear.com>
pacerforum 1480/tcp PacerForum
pacerforum 1480/udp PacerForum
Peter Caswell <pfc@pacvax.pacersoft.com>
airs 1481/tcp AIRS
airs 1481/udp AIRS
Bruce Wilson, 905-771-6161
miteksys-lm 1482/tcp Miteksys License Manager
miteksys-lm 1482/udp Miteksys License Manager
Shane McRoberts <mcroberts@miteksys.com>
afs 1483/tcp AFS License Manager
afs 1483/udp AFS License Manager
Michael R. Pizolato <michael@afs.com>
confluent 1484/tcp Confluent License Manager
confluent 1484/udp Confluent License Manager
James Greenfiel <jim@pa.confluent.com>
lansource 1485/tcp LANSource
lansource 1485/udp LANSource
Doug Scott <lansourc@hookup.net>
nms_topo_serv 1486/tcp nms_topo_serv
nms_topo_serv 1486/udp nms_topo_serv

Sylvia Siu <Sylvia_Siu@Novell.CO>
localinfosrvr 1487/tcp LocalInfoSrvr
localinfosrvr 1487/udp LocalInfoSrvr
Brian Matthews <brian_matthews@ibist.ibis.com>
docstor 1488/tcp DocStor
docstor 1488/udp DocStor
Brian Spears <bspears@salix.com>
dmdocbroker 1489/tcp dmdocbroker
dmdocbroker 1489/udp dmdocbroker
Razmik Abnous <abnous@documentum.com>
insitu-conf 1490/tcp insitu-conf
insitu-conf 1490/udp insitu-conf
Paul Blacknell <paul@insitu.com>
anynetgateway 1491/tcp anynetgateway
anynetgateway 1491/udp anynetgateway
Dan Poirier <poirier@VNET.IBM.COM>
stone-design-1 1492/tcp stone-design-1
stone-design-1 1492/udp stone-design-1
Andrew Stone <andrew@stone.com>
netmap_lm 1493/tcp netmap_lm
netmap_lm 1493/udp netmap_lm
Phillip Magson <philm@extro.ucc.su.OZ.AU>
ica 1494/tcp ica
ica 1494/udp ica
John Richardson, Citrix Systems
cvc 1495/tcp cvc
cvc 1495/udp cvc
Bill Davidson <billd@equalizer.cray.com>
liberty-lm 1496/tcp liberty-lm
liberty-lm 1496/udp liberty-lm
Jim Rogers <trane!jimbo@pacbell.com>
rfx-lm 1497/tcp rfx-lm
rfx-lm 1497/udp rfx-lm
Bill Bishop <bil@rfx.rfx.com>
watcom-sql 1498/tcp Watcom-SQL
watcom-sql 1498/udp Watcom-SQL
Rog Skubowius <rwskubow@ccnga.uwaterloo.ca>
fhc 1499/tcp Federico Heinz Consultora
fhc 1499/udp Federico Heinz Consultora
Federico Heinz <federico@heinz.com>
vlsi-lm 1500/tcp VLSI License Manager
vlsi-lm 1500/udp VLSI License Manager
Shue-Lin Kuo <shuelin@mdk.sanjose.vlsi.com>
sas-3 1501/tcp Satellite-data Acquisition System 3
sas-3 1501/udp Satellite-data Acquisition System 3
Bill Taylor <sais@ssec.wisc.edu>
shivadiscovery 1502/tcp Shiva
shivadiscovery 1502/udp Shiva
Jonathan Wenocur <jhw@Shiva.COM>
imtc-mcs 1503/tcp Databeam
imtc-mcs 1503/udp Databeam
Jim Johnstone <jjohnstone@databeam.com>
evb-elm 1504/tcp EVB Software Engineering License Manager
evb-elm 1504/udp EVB Software Engineering License Manager
B.G. Mahesh < mahesh@sett.com>
funkproxy 1505/tcp Funk Software, Inc.
funkproxy 1505/udp Funk Software, Inc.
Robert D. Vincent <bert@willowpond.com>
1506-1523 Unassigned
ingreslock 1524/tcp ingres
ingreslock 1524/udp ingres
orasrv 1525/tcp oracle
orasrv 1525/udp oracle
prospero-np 1525/tcp Prospero Directory Service non-priv
prospero-np 1525/udp Prospero Directory Service non-priv
pdap-np 1526/tcp Prospero Data Access Prot non-priv
pdap-np 1526/udp Prospero Data Access Prot non-priv
B. Clifford Neuman <bcn@isi.edu>
tlisrv 1527/tcp oracle
tlisrv 1527/udp oracle
coauthor 1529/tcp oracle

coauthor 1529/udp oracle
issd 1600/tcp
issd 1600/udp
nkd 1650/tcp
nkd 1650/udp
proshareaudio 1651/tcp proshare conf audio
proshareaudio 1651/udp proshare conf audio
prosharevideo 1652/tcp proshare conf video
prosharevideo 1652/udp proshare conf video
prosharedata 1653/tcp proshare conf data
prosharedata 1653/udp proshare conf data
prosharerequest 1654/tcp proshare conf request
prosharerequest 1654/udp proshare conf request
prosharenotify 1655/tcp proshare conf notify
prosharenotify 1655/udp proshare conf notify
<gunner@ibeam.intel.com>
netview-aix-1 1661/tcp netview-aix-1
netview-aix-1 1661/udp netview-aix-1
netview-aix-2 1662/tcp netview-aix-2
netview-aix-2 1662/udp netview-aix-2
netview-aix-3 1663/tcp netview-aix-3
netview-aix-3 1663/udp netview-aix-3
netview-aix-4 1664/tcp netview-aix-4
netview-aix-4 1664/udp netview-aix-4
netview-aix-5 1665/tcp netview-aix-5
netview-aix-5 1665/udp netview-aix-5
netview-aix-6 1666/tcp netview-aix-6
netview-aix-6 1666/udp netview-aix-6
Martha Crisson <CRISSON@ralvm12.vnet.ibm.com>
licensedaemon 1986/tcp cisco license management
licensedaemon 1986/udp cisco license management
tr-rsrb-p1 1987/tcp cisco RSRB Priority 1 port
tr-rsrb-p1 1987/udp cisco RSRB Priority 1 port
tr-rsrb-p2 1988/tcp cisco RSRB Priority 2 port
tr-rsrb-p2 1988/udp cisco RSRB Priority 2 port
tr-rsrb-p3 1989/tcp cisco RSRB Priority 3 port
tr-rsrb-p3 1989/udp cisco RSRB Priority 3 port
#PROBLEMS!===
mshnet 1989/tcp MHSnet system
mshnet 1989/udp MHSnet system
Bob Kummerfeld <bob@sarad.cs.su.oz.au>
#PROBLEMS!===
stun-p1 1990/tcp cisco STUN Priority 1 port
stun-p1 1990/udp cisco STUN Priority 1 port
stun-p2 1991/tcp cisco STUN Priority 2 port
stun-p2 1991/udp cisco STUN Priority 2 port
stun-p3 1992/tcp cisco STUN Priority 3 port
stun-p3 1992/udp cisco STUN Priority 3 port
#PROBLEMS!===
ipsendmsg 1992/tcp IPsendmsg
ipsendmsg 1992/udp IPsendmsg
Bob Kummerfeld <bob@sarad.cs.su.oz.au>
#PROBLEMS!===
snmp-tcp-port 1993/tcp cisco SNMP TCP port
snmp-tcp-port 1993/udp cisco SNMP TCP port
stun-port 1994/tcp cisco serial tunnel port
stun-port 1994/udp cisco serial tunnel port
perf-port 1995/tcp cisco perf port
perf-port 1995/udp cisco perf port
tr-rsrb-port 1996/tcp cisco Remote SRB port
tr-rsrb-port 1996/udp cisco Remote SRB port
gdp-port 1997/tcp cisco Gateway Discovery Protocol
gdp-port 1997/udp cisco Gateway Discovery Protocol
x25-svc-port 1998/tcp cisco X.25 service (XOT)
x25-svc-port 1998/udp cisco X.25 service (XOT)
tcp-id-port 1999/tcp cisco identification port
tcp-id-port 1999/udp cisco identification port
callbook 2000/tcp
callbook 2000/udp
dc 2001/tcp
wizard 2001/udp curry

globe 2002/tcp
globe 2002/udp
mailbox 2004/tcp
emce 2004/udp CCWS mm conf
berknet 2005/tcp
oracle 2005/udp
invokator 2006/tcp
raid-cc 2006/udp raid
dectalk 2007/tcp
raid-am 2007/udp
conf 2008/tcp
terminaldb 2008/udp
news 2009/tcp
whosockami 2009/udp
search 2010/tcp
pipe_server 2010/udp
raid-cc 2011/tcp raid
servserv 2011/udp
ttyinfo 2012/tcp
raid-ac 2012/udp
raid-am 2013/tcp
raid-cd 2013/udp
troff 2014/tcp
raid-sf 2014/udp
cypress 2015/tcp
raid-cs 2015/udp
bootserver 2016/tcp
bootserver 2016/udp
cypress-stat 2017/tcp
bootclient 2017/udp
terminaldb 2018/tcp
rellpack 2018/udp
whosockami 2019/tcp
about 2019/udp
xinupageserver 2020/tcp
xinupageserver 2020/udp
servexec 2021/tcp
xinuexpansion1 2021/udp
down 2022/tcp
xinuexpansion2 2022/udp
xinuexpansion3 2023/tcp
xinuexpansion3 2023/udp
xinuexpansion4 2024/tcp
xinuexpansion4 2024/udp
ellpack 2025/tcp
xribs 2025/udp
scrabble 2026/tcp
scrabble 2026/udp
shadowserver 2027/tcp
shadowserver 2027/udp
submitserver 2028/tcp
submitserver 2028/udp
device2 2030/tcp
device2 2030/udp
blackboard 2032/tcp
blackboard 2032/udp
glogger 2033/tcp
glogger 2033/udp
scoremgr 2034/tcp
scoremgr 2034/udp
imsldoc 2035/tcp
imsldoc 2035/udp
objectmanager 2038/tcp
objectmanager 2038/udp
lam 2040/tcp
lam 2040/udp
interbase 2041/tcp
interbase 2041/udp
isis 2042/tcp
isis 2042/udp
isis-bcast 2043/tcp

isis-bcast 2043/udp
rimsl 2044/tcp
rimsl 2044/udp
cdfunc 2045/tcp
cdfunc 2045/udp
sdfunc 2046/tcp
sdfunc 2046/udp
dls 2047/tcp
dls 2047/udp
dls-monitor 2048/tcp
dls-monitor 2048/udp
shilp 2049/tcp
shilp 2049/udp
dlsrpn 2065/tcp Data Link Switch Read Port Number
dlsrpn 2065/udp Data Link Switch Read Port Number
dlswpn 2067/tcp Data Link Switch Write Port Number
dlswpn 2067/udp Data Link Switch Write Port Number
ats 2201/tcp Advanced Training System Program
ats 2201/udp Advanced Training System Program
rtsserv 2500/tcp Resource Tracking system server
rtsserv 2500/udp Resource Tracking system server
rtsclient 2501/tcp Resource Tracking system client
rtsclient 2501/udp Resource Tracking system client
Aubrey Turner
<S95525ta%etsuacad.bitnet@ETSUADMN.ETSU.EDU>
hp-3000-telnet 2564/tcp HP 3000 NS/VT block mode telnet
www-dev 2784/tcp world wide web - development
www-dev 2784/udp world wide web - development
NSWS 3049/tcp
NSWS 3049/udp
ccmail 3264/tcp cc:mail/lotus
ccmail 3264/udp cc:mail/lotus
dec-notes 3333/tcp DEC Notes
dec-notes 3333/udp DEC Notes
Kim Moraros <moraros@via.enet.dec.com>
mapper-nodemgr 3984/tcp MAPPER network node manager
mapper-nodemgr 3984/udp MAPPER network node manager
mapper-mapethd 3985/tcp MAPPER TCP/IP server
mapper-mapethd 3985/udp MAPPER TCP/IP server
mapper-ws_ethd 3986/tcp MAPPER workstation server
mapper-ws_ethd 3986/udp MAPPER workstation server
John C. Horton <jch@unirsvl.rsvl.unisys.com>
bmap 3421/tcp Bull Apprise portmapper
bmap 3421/udp Bull Apprise portmapper
Jeremy Gilbert <J.Gilbert@ma30.bull.com>
udt_os 3900/tcp Unidata UDT OS
udt_os 3900/udp Unidata UDT OS
James Powell <james@mailhost.unidata.com>
nuts_dem 4132/tcp NUTS Daemon
nuts_dem 4132/udp NUTS Daemon
nuts_bootp 4133/tcp NUTS Bootp Server
nuts_bootp 4133/udp NUTS Bootp Server
Martin Freiss <freiss.pad@sni.>
unicall 4343/tcp UNICALL
unicall 4343/udp UNICALL
James Powell <james@enghp.unidata.comp>
krb524 4444/tcp KRB524
krb524 4444/udp KRB524
B. Clifford Neuman <bcn@isi.edu>
rfa 4672/tcp remote file access server
rfa 4672/udp remote file access server
commplex-main 5000/tcp
commplex-main 5000/udp
commplex-link 5001/tcp
commplex-link 5001/udp
rfe 5002/tcp radio free ethernet
rfe 5002/udp radio free ethernet
telelpathstart 5010/tcp TelepathStart
telelpathstart 5010/udp TelepathStart
telelpathattack 5011/tcp TelepathAttack
telelpathattack 5011/udp TelepathAttack

Helmuth Breitenfellner <hbreitenf@vnet.imb.com>
mmcc 5050/tcp multimedia conference control tool
mmcc 5050/udp multimedia conference control tool
rmonitor_secure 5145/tcp
rmonitor_secure 5145/udp
aol 5190/tcp America-Online
aol 5190/udp America-Online
Marty Lyons <marty@aol.com>
padl2sim 5236/tcp
padl2sim 5236/udp
hacl-hb 5300/tcp # HA cluster heartbeat
hacl-hb 5300/udp # HA cluster heartbeat
hacl-gs 5301/tcp # HA cluster general services
hacl-gs 5301/udp # HA cluster general services
hacl-cfg 5302/tcp # HA cluster configuration
hacl-cfg 5302/udp # HA cluster configuration
hacl-probe 5303/tcp # HA cluster probing
hacl-probe 5303/udp # HA cluster probing
hacl-local 5304/tcp
hacl-local 5304/udp
hacl-test 5305/tcp
hacl-test 5305/udp
Eric Soderberg <seric@hposl102.cup.hp>
x11 6000-6063/tcp X Window System
x11 6000-6063/udp X Window System
Stephen Gildea <gildea@expo.lcs.mit.edu>
sub-process 6111/tcp HP SoftBench Sub-Process Control
sub-process 6111/udp HP SoftBench Sub-Process Control
meta-corp 6141/tcp Meta Corporation License Manager
meta-corp 6141/udp Meta Corporation License Manager
Osamu Masuda <--none--->
aspentec-lm 6142/tcp Aspen Technology License Manager
aspentec-lm 6142/udp Aspen Technology License Manager
Kevin Massey <massey@aspentec.com>
watershed-lm 6143/tcp Watershed License Manager
watershed-lm 6143/udp Watershed License Manager
David Ferrero <david@zion.com>
statsci1-lm 6144/tcp StatSci License Manager - 1
statsci1-lm 6144/udp StatSci License Manager - 1
statsci2-lm 6145/tcp StatSci License Manager - 2
statsci2-lm 6145/udp StatSci License Manager - 2
Scott Blachowicz <scott@statsci.com>
lonewolf-lm 6146/tcp Lone Wolf Systems License Manager
lonewolf-lm 6146/udp Lone Wolf Systems License Manager
Dan Klein <dvk@lonewolf.com>
montage-lm 6147/tcp Montage License Manager
montage-lm 6147/udp Montage License Manager
Michael Ubell <michael@montage.com>
xdsxdm 6558/udp
xdsxdm 6558/tcp
afs3-fileserver 7000/tcp file server itself
afs3-fileserver 7000/udp file server itself
afs3-callback 7001/tcp callbacks to cache managers
afs3-callback 7001/udp callbacks to cache managers
afs3-prserver 7002/tcp users & groups database
afs3-prserver 7002/udp users & groups database
afs3-vlserver 7003/tcp volume location database
afs3-vlserver 7003/udp volume location database
afs3-kaserver 7004/tcp AFS/Kerberos authentication service
afs3-kaserver 7004/udp AFS/Kerberos authentication service
afs3-volser 7005/tcp volume managment server
afs3-volser 7005/udp volume managment server
afs3-errors 7006/tcp error interpretation service
afs3-errors 7006/udp error interpretation service
afs3-bos 7007/tcp basic overseer process
afs3-bos 7007/udp basic overseer process
afs3-update 7008/tcp server-to-server updater
afs3-update 7008/udp server-to-server updater
afs3-rmtsys 7009/tcp remote cache manager service
afs3-rmtsys 7009/udp remote cache manager service
ups-onlinet 7010/tcp onlinet uninterruptable power supplies

ups-onlinet 7010/udp onlinet uninterruptable power supplies
Brian Hammill <hamill@dolphin.exide.com>
font-service 7100/tcp X Font Service
font-service 7100/udp X Font Service
Stephen Gildea <gildea@expo.lcs.mit.edu>
fodms 7200/tcp FODMS FLIP
fodms 7200/udp FODMS FLIP
David Anthony <anthony@power.amasd.anatcp.rockwell.com>
man 9535/tcp
man 9535/udp
isode-dua 17007/tcp
isode-dua 17007/udp

REFERENCES

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 USC/Information Sciences Institute, August 1980.

[RFC793] Postel, J., ed., "Transmission Control Protocol - DARPA
 Internet Program Protocol Specification", STD 7, RFC 793,
 USC/Information Sciences Institute, September 1981.

[]

URL = ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers

RFC 959 Index
1.     INTRODUCTION

2.     OVERVIEW

2.1.     HISTORY

2.2.     TERMINOLOGY

2.3.     THE FTP MODEL 

3.     DATA TRANSFER FUNCTIONS 

3.1.     DATA REPRESENTATION AND STORAGE

3.1.1.     DATA TYPES

3.1.1.1.     ASCII TYPE

3.1.1.3.     IMAGE TYPE

3.1.1.4.     LOCAL TYPE

3.1.1.5.     FORMAT CONTROL

3.1.1.5.1.     NON PRINT

3.1.2.1.     FILE STRUCTURE

3.1.2.2.     RECORD STRUCTURE

3.1.2.3.     PAGE STRUCTURE

3.2.     ESTABLISHING DATA CONNECTIONS

3.3.     DATA CONNECTION MANAGEMENT

3.4.     TRANSMISSION MODES

3.4.1.     STREAM MODE

3.4.2.     BLOCK MODE

3.4.3.     COMPRESSED MODE

3.5.     ERROR RECOVERY AND RESTART

4.     FILE TRANSFER FUNCTIONS

4.1.     FTP COMMANDS

4.1.1.     ACCESS CONTROL COMMANDS

4.1.2.     TRANSFER PARAMETER COMMANDS

4.1.3.     FTP SERVICE COMMANDS

4.2.     FTP REPLIES

4.2.1     Reply Codes by Function Groups

4.2.2  Numeric    Order List of Reply Codes

5.     DECLARATIVE SPECIFICATIONS

5.1.     MINIMUM IMPLEMENTATION

5.2.     CONNECTIONS

5.3.     COMMANDS

5.3.1.     FTP COMMANDS

5.3.2.     FTP COMMAND ARGUMENTS

5.4.     SEQUENCING OF COMMANDS AND REPLIES

6.     STATE DIAGRAM

7.     TYPICAL FTP SCENARIO

8.     CONNECTION ESTABLISHMENT

APPENDIX I - PAGE STRUCTURE

APPENDIX II - DIRECTORY COMMANDS

APPENDIX III - RFCs on FTP

RFC 959

Network Working Group J. Postel
Request for Comments: 959 J. Reynolds
 ISI
Obsoletes RFC: 765 (IEN 149) October 1985

 FILE TRANSFER PROTOCOL (FTP)

Status of this Memo

 This memo is the official specification of the File Transfer
 Protocol (FTP). Distribution of this memo is unlimited.

 The following new optional commands are included in this edition of
 the specification:

 CDUP (Change to Parent Directory), SMNT (Structure Mount), STOU
 (Store Unique), RMD (Remove Directory), MKD (Make Directory), PWD
 (Print Directory), and SYST (System).

 Note that this specification is compatible with the previous edition.

1. INTRODUCTION

 The objectives of FTP are 1) to promote sharing of files (computer
 programs and/or data), 2) to encourage indirect or implicit (via
 programs) use of remote computers, 3) to shield a user from
 variations in file storage systems among hosts, and 4) to transfer
 data reliably and efficiently. FTP, though usable directly by a user
 at a terminal, is designed mainly for use by programs.

 The attempt in this specification is to satisfy the diverse needs of
 users of maxi-hosts, mini-hosts, personal workstations, and TACs,
 with a simple, and easily implemented protocol design.

 This paper assumes knowledge of the Transmission Control Protocol
 (TCP) [2] and the Telnet Protocol [3]. These documents are contained
 in the ARPA-Internet protocol handbook [1].

2. OVERVIEW

 In this section, the history, the terminology, and the FTP model are
 discussed. The terms defined in this section are only those that
 have special significance in FTP. Some of the terminology is very
 specific to the FTP model; some readers may wish to turn to the
 section on the FTP model while reviewing the terminology.

 2.1. HISTORY

 FTP has had a long evolution over the years. Appendix III is a
 chronological compilation of Request for Comments documents
 relating to FTP. These include the first proposed file transfer
 mechanisms in 1971 that were developed for implementation on hosts
 at M.I.T. (RFC 114), plus comments and discussion in RFC 141.

 RFC 172 provided a user-level oriented protocol for file transfer
 between host computers (including terminal IMPs). A revision of
 this as RFC 265, restated FTP for additional review, while RFC 281
 suggested further changes. The use of a "Set Data Type"
 transaction was proposed in RFC 294 in January 1982.

 RFC 354 obsoleted RFCs 264 and 265. The File Transfer Protocol
 was now defined as a protocol for file transfer between HOSTs on
 the ARPANET, with the primary function of FTP defined as
 transfering files efficiently and reliably among hosts and
 allowing the convenient use of remote file storage capabilities.
 RFC 385 further commented on errors, emphasis points, and
 additions to the protocol, while RFC 414 provided a status report

 on the working server and user FTPs. RFC 430, issued in 1973,
 (among other RFCs too numerous to mention) presented further
 comments on FTP. Finally, an "official" FTP document was
 published as RFC 454.

 By July 1973, considerable changes from the last versions of FTP
 were made, but the general structure remained the same. RFC 542
 was published as a new "official" specification to reflect these
 changes. However, many implementations based on the older
 specification were not updated.

 In 1974, RFCs 607 and 614 continued comments on FTP. RFC 624
 proposed further design changes and minor modifications. In 1975,
 RFC 686 entitled, "Leaving Well Enough Alone", discussed the
 differences between all of the early and later versions of FTP.
 RFC 691 presented a minor revision of RFC 686, regarding the
 subject of print files.

 Motivated by the transition from the NCP to the TCP as the
 underlying protocol, a phoenix was born out of all of the above
 efforts in RFC 765 as the specification of FTP for use on TCP.

 This current edition of the FTP specification is intended to
 correct some minor documentation errors, to improve the
 explanation of some protocol features, and to add some new
 optional commands.

 In particular, the following new optional commands are included in
 this edition of the specification:

 CDUP - Change to Parent Directory

 SMNT - Structure Mount

 STOU - Store Unique

 RMD - Remove Directory

 MKD - Make Directory

 PWD - Print Directory

 SYST - System

 This specification is compatible with the previous edition. A
 program implemented in conformance to the previous specification
 should automatically be in conformance to this specification.

 2.2. TERMINOLOGY

 ASCII

 The ASCII character set is as defined in the ARPA-Internet
 Protocol Handbook. In FTP, ASCII characters are defined to be
 the lower half of an eight-bit code set (i.e., the most
 significant bit is zero).

 access controls

 Access controls define users' access privileges to the use of a
 system, and to the files in that system. Access controls are
 necessary to prevent unauthorized or accidental use of files.
 It is the prerogative of a server-FTP process to invoke access
 controls.

 byte size

 There are two byte sizes of interest in FTP: the logical byte
 size of the file, and the transfer byte size used for the
 transmission of the data. The transfer byte size is always 8
 bits. The transfer byte size is not necessarily the byte size

 in which data is to be stored in a system, nor the logical byte
 size for interpretation of the structure of the data.

 control connection

 The communication path between the USER-PI and SERVER-PI for
 the exchange of commands and replies. This connection follows
 the Telnet Protocol.

 data connection

 A full duplex connection over which data is transferred, in a
 specified mode and type. The data transferred may be a part of
 a file, an entire file or a number of files. The path may be
 between a server-DTP and a user-DTP, or between two
 server-DTPs.

 data port

 The passive data transfer process "listens" on the data port
 for a connection from the active transfer process in order to
 open the data connection.

 DTP

 The data transfer process establishes and manages the data
 connection. The DTP can be passive or active.

 End-of-Line

 The end-of-line sequence defines the separation of printing
 lines. The sequence is Carriage Return, followed by Line Feed.

 EOF

 The end-of-file condition that defines the end of a file being
 transferred.

 EOR

 The end-of-record condition that defines the end of a record
 being transferred.

 error recovery

 A procedure that allows a user to recover from certain errors
 such as failure of either host system or transfer process. In
 FTP, error recovery may involve restarting a file transfer at a
 given checkpoint.

 FTP commands

 A set of commands that comprise the control information flowing
 from the user-FTP to the server-FTP process.

 file

 An ordered set of computer data (including programs), of
 arbitrary length, uniquely identified by a pathname.

 mode

 The mode in which data is to be transferred via the data
 connection. The mode defines the data format during transfer
 including EOR and EOF. The transfer modes defined in FTP are
 described in the Section on Transmission Modes.

 NVT

 The Network Virtual Terminal as defined in the Telnet Protocol.

 NVFS

 The Network Virtual File System. A concept which defines a
 standard network file system with standard commands and
 pathname conventions.

 page

 A file may be structured as a set of independent parts called
 pages. FTP supports the transmission of discontinuous files as
 independent indexed pages.

 pathname

 Pathname is defined to be the character string which must be
 input to a file system by a user in order to identify a file.
 Pathname normally contains device and/or directory names, and
 file name specification. FTP does not yet specify a standard
 pathname convention. Each user must follow the file naming
 conventions of the file systems involved in the transfer.

 PI

 The protocol interpreter. The user and server sides of the
 protocol have distinct roles implemented in a user-PI and a
 server-PI.

 record

 A sequential file may be structured as a number of contiguous
 parts called records. Record structures are supported by FTP
 but a file need not have record structure.

 reply

 A reply is an acknowledgment (positive or negative) sent from
 server to user via the control connection in response to FTP
 commands. The general form of a reply is a completion code
 (including error codes) followed by a text string. The codes
 are for use by programs and the text is usually intended for
 human users.

 server-DTP

 The data transfer process, in its normal "active" state,
 establishes the data connection with the "listening" data port.
 It sets up parameters for transfer and storage, and transfers
 data on command from its PI. The DTP can be placed in a
 "passive" state to listen for, rather than initiate a
 connection on the data port.

 server-FTP process

 A process or set of processes which perform the function of
 file transfer in cooperation with a user-FTP process and,
 possibly, another server. The functions consist of a protocol
 interpreter (PI) and a data transfer process (DTP).

 server-PI

 The server protocol interpreter "listens" on Port L for a
 connection from a user-PI and establishes a control
 communication connection. It receives standard FTP commands
 from the user-PI, sends replies, and governs the server-DTP.

 type

 The data representation type used for data transfer and
 storage. Type implies certain transformations between the time

 of data storage and data transfer. The representation types
 defined in FTP are described in the Section on Establishing
 Data Connections.

 user

 A person or a process on behalf of a person wishing to obtain
 file transfer service. The human user may interact directly
 with a server-FTP process, but use of a user-FTP process is
 preferred since the protocol design is weighted towards
 automata.

 user-DTP

 The data transfer process "listens" on the data port for a
 connection from a server-FTP process. If two servers are
 transferring data between them, the user-DTP is inactive.

 user-FTP process

 A set of functions including a protocol interpreter, a data
 transfer process and a user interface which together perform
 the function of file transfer in cooperation with one or more
 server-FTP processes. The user interface allows a local
 language to be used in the command-reply dialogue with the
 user.

 user-PI

 The user protocol interpreter initiates the control connection
 from its port U to the server-FTP process, initiates FTP
 commands, and governs the user-DTP if that process is part of
 the file transfer.

 2.3. THE FTP MODEL

 With the above definitions in mind, the following model (shown in
 Figure 1) may be diagrammed for an FTP service.

 |/---------\|
 || User || --------
 ||Interface|<--->| User |
 |\----^----/| --------
 ---------- | | |
 |/------\| FTP Commands |/----V----\| | | | | | |
 ||Server|<---------------->| User ||
 || PI || FTP Replies || PI ||
 |\--^---/| |\----^----/|
 | | | | | |
 -------- |/--V---\| Data |/----V----\| --------
 | File |<--->|Server|<---------------->| User |<--->| File |
 |System| || DTP || Connection || DTP || |System|
 -------- |\------/| |\---------/| --------
 ---------- -------------

 Server-FTP USER-FTP

 NOTES: 1. The data connection may be used in either direction.
 2. The data connection need not exist all of the time.

 Figure 1 Model for FTP Use

 In the model described in Figure 1, the user-protocol interpreter
 initiates the control connection. The control connection follows
 the Telnet protocol. At the initiation of the user, standard FTP
 commands are generated by the user-PI and transmitted to the

 server process via the control connection. (The user may
 establish a direct control connection to the server-FTP, from a
 TAC terminal for example, and generate standard FTP commands
 independently, bypassing the user-FTP process.) Standard replies
 are sent from the server-PI to the user-PI over the control
 connection in response to the commands.

 The FTP commands specify the parameters for the data connection
 (data port, transfer mode, representation type, and structure) and
 the nature of file system operation (store, retrieve, append,
 delete, etc.). The user-DTP or its designate should "listen" on
 the specified data port, and the server initiate the data
 connection and data transfer in accordance with the specified
 parameters. It should be noted that the data port need not be in

 the same host that initiates the FTP commands via the control
 connection, but the user or the user-FTP process must ensure a
 "listen" on the specified data port. It ought to also be noted
 that the data connection may be used for simultaneous sending and
 receiving.

 In another situation a user might wish to transfer files between
 two hosts, neither of which is a local host. The user sets up
 control connections to the two servers and then arranges for a
 data connection between them. In this manner, control information
 is passed to the user-PI but data is transferred between the
 server data transfer processes. Following is a model of this
 server-server interaction.

 Control ------------ Control
 ---------->| User-FTP |<-----------
 | | User-PI | |
 | | "C" | |
 V ------------ V
 -------------- --------------
 | Server-FTP | Data Connection | Server-FTP |
 | "A" |<---------------------->| "B" |
 -------------- Port (A) Port (B) --------------

 Figure 2

 The protocol requires that the control connections be open while
 data transfer is in progress. It is the responsibility of the
 user to request the closing of the control connections when
 finished using the FTP service, while it is the server who takes
 the action. The server may abort data transfer if the control
 connections are closed without command.

 The Relationship between FTP and Telnet:

 The FTP uses the Telnet protocol on the control connection.
 This can be achieved in two ways: first, the user-PI or the
 server-PI may implement the rules of the Telnet Protocol
 directly in their own procedures; or, second, the user-PI or
 the server-PI may make use of the existing Telnet module in the
 system.

 Ease of implementaion, sharing code, and modular programming
 argue for the second approach. Efficiency and independence

 argue for the first approach. In practice, FTP relies on very
 little of the Telnet Protocol, so the first approach does not
 necessarily involve a large amount of code.

3. DATA TRANSFER FUNCTIONS

 Files are transferred only via the data connection. The control
 connection is used for the transfer of commands, which describe the

 functions to be performed, and the replies to these commands (see the
 Section on FTP Replies). Several commands are concerned with the
 transfer of data between hosts. These data transfer commands include
 the MODE command which specify how the bits of the data are to be
 transmitted, and the STRUcture and TYPE commands, which are used to
 define the way in which the data are to be represented. The
 transmission and representation are basically independent but the
 "Stream" transmission mode is dependent on the file structure
 attribute and if "Compressed" transmission mode is used, the nature
 of the filler byte depends on the representation type.

 3.1. DATA REPRESENTATION AND STORAGE

 Data is transferred from a storage device in the sending host to a
 storage device in the receiving host. Often it is necessary to
 perform certain transformations on the data because data storage
 representations in the two systems are different. For example,
 NVT-ASCII has different data storage representations in different
 systems. DEC TOPS-20s's generally store NVT-ASCII as five 7-bit
 ASCII characters, left-justified in a 36-bit word. IBM Mainframe's
 store NVT-ASCII as 8-bit EBCDIC codes. Multics stores NVT-ASCII
 as four 9-bit characters in a 36-bit word. It is desirable to
 convert characters into the standard NVT-ASCII representation when
 transmitting text between dissimilar systems. The sending and
 receiving sites would have to perform the necessary
 transformations between the standard representation and their
 internal representations.

 A different problem in representation arises when transmitting
 binary data (not character codes) between host systems with
 different word lengths. It is not always clear how the sender
 should send data, and the receiver store it. For example, when
 transmitting 32-bit bytes from a 32-bit word-length system to a
 36-bit word-length system, it may be desirable (for reasons of
 efficiency and usefulness) to store the 32-bit bytes
 right-justified in a 36-bit word in the latter system. In any
 case, the user should have the option of specifying data
 representation and transformation functions. It should be noted

 that FTP provides for very limited data type representations.
 Transformations desired beyond this limited capability should be
 performed by the user directly.

 3.1.1. DATA TYPES

 Data representations are handled in FTP by a user specifying a
 representation type. This type may implicitly (as in ASCII or
 EBCDIC) or explicitly (as in Local byte) define a byte size for
 interpretation which is referred to as the "logical byte size."
 Note that this has nothing to do with the byte size used for
 transmission over the data connection, called the "transfer
 byte size", and the two should not be confused. For example,
 NVT-ASCII has a logical byte size of 8 bits. If the type is
 Local byte, then the TYPE command has an obligatory second
 parameter specifying the logical byte size. The transfer byte
 size is always 8 bits.

 3.1.1.1. ASCII TYPE

 This is the default type and must be accepted by all FTP
 implementations. It is intended primarily for the transfer
 of text files, except when both hosts would find the EBCDIC
 type more convenient.

 The sender converts the data from an internal character
 representation to the standard 8-bit NVT-ASCII
 representation (see the Telnet specification). The receiver
 will convert the data from the standard form to his own
 internal form.

 In accordance with the NVT standard, the <CRLF> sequence
 should be used where necessary to denote the end of a line
 of text. (See the discussion of file structure at the end
 of the Section on Data Representation and Storage.)

 Using the standard NVT-ASCII representation means that data
 must be interpreted as 8-bit bytes.

 The Format parameter for ASCII and EBCDIC types is discussed
 below.

 3.1.1.2. EBCDIC TYPE

 This type is intended for efficient transfer between hosts
 which use EBCDIC for their internal character
 representation.

 For transmission, the data are represented as 8-bit EBCDIC
 characters. The character code is the only difference
 between the functional specifications of EBCDIC and ASCII
 types.

 End-of-line (as opposed to end-of-record--see the discussion
 of structure) will probably be rarely used with EBCDIC type
 for purposes of denoting structure, but where it is
 necessary the <NL> character should be used.

 3.1.1.3. IMAGE TYPE

 The data are sent as contiguous bits which, for transfer,
 are packed into the 8-bit transfer bytes. The receiving
 site must store the data as contiguous bits. The structure
 of the storage system might necessitate the padding of the
 file (or of each record, for a record-structured file) to
 some convenient boundary (byte, word or block). This
 padding, which must be all zeros, may occur only at the end
 of the file (or at the end of each record) and there must be
 a way of identifying the padding bits so that they may be
 stripped off if the file is retrieved. The padding
 transformation should be well publicized to enable a user to
 process a file at the storage site.

 Image type is intended for the efficient storage and
 retrieval of files and for the transfer of binary data. It
 is recommended that this type be accepted by all FTP
 implementations.

 3.1.1.4. LOCAL TYPE

 The data is transferred in logical bytes of the size
 specified by the obligatory second parameter, Byte size.
 The value of Byte size must be a decimal integer; there is
 no default value. The logical byte size is not necessarily
 the same as the transfer byte size. If there is a
 difference in byte sizes, then the logical bytes should be
 packed contiguously, disregarding transfer byte boundaries
 and with any necessary padding at the end.

 When the data reaches the receiving host, it will be
 transformed in a manner dependent on the logical byte size
 and the particular host. This transformation must be
 invertible (i.e., an identical file can be retrieved if the
 same parameters are used) and should be well publicized by
 the FTP implementors.

 For example, a user sending 36-bit floating-point numbers to
 a host with a 32-bit word could send that data as Local byte
 with a logical byte size of 36. The receiving host would
 then be expected to store the logical bytes so that they
 could be easily manipulated; in this example putting the

 36-bit logical bytes into 64-bit double words should
 suffice.

 In another example, a pair of hosts with a 36-bit word size
 may send data to one another in words by using TYPE L 36.
 The data would be sent in the 8-bit transmission bytes
 packed so that 9 transmission bytes carried two host words.

 3.1.1.5. FORMAT CONTROL

 The types ASCII and EBCDIC also take a second (optional)
 parameter; this is to indicate what kind of vertical format
 control, if any, is associated with a file. The following
 data representation types are defined in FTP:

 A character file may be transferred to a host for one of
 three purposes: for printing, for storage and later
 retrieval, or for processing. If a file is sent for
 printing, the receiving host must know how the vertical
 format control is represented. In the second case, it must
 be possible to store a file at a host and then retrieve it
 later in exactly the same form. Finally, it should be
 possible to move a file from one host to another and process
 the file at the second host without undue trouble. A single
 ASCII or EBCDIC format does not satisfy all these
 conditions. Therefore, these types have a second parameter
 specifying one of the following three formats:

 3.1.1.5.1. NON PRINT

 This is the default format to be used if the second
 (format) parameter is omitted. Non-print format must be
 accepted by all FTP implementations.

 The file need contain no vertical format information. If
 it is passed to a printer process, this process may
 assume standard values for spacing and margins.

 Normally, this format will be used with files destined
 for processing or just storage.

 3.1.1.5.2. TELNET FORMAT CONTROLS

 The file contains ASCII/EBCDIC vertical format controls
 (i.e., <CR>, <LF>, <NL>, <VT>, <FF>) which the printer
 process will interpret appropriately. <CRLF>, in exactly
 this sequence, also denotes end-of-line.

 3.1.1.5.2. CARRIAGE CONTROL (ASA)

 The file contains ASA (FORTRAN) vertical format control
 characters. (See RFC 740 Appendix C; and Communications
 of the ACM, Vol. 7, No. 10, p. 606, October 1964.) In a
 line or a record formatted according to the ASA Standard,
 the first character is not to be printed. Instead, it
 should be used to determine the vertical movement of the
 paper which should take place before the rest of the
 record is printed.

 The ASA Standard specifies the following control
 characters:

 Character Vertical Spacing

 blank Move paper up one line
 0 Move paper up two lines
 1 Move paper to top of next page
 + No movement, i.e., overprint

 Clearly there must be some way for a printer process to
 distinguish the end of the structural entity. If a file
 has record structure (see below) this is no problem;
 records will be explicitly marked during transfer and
 storage. If the file has no record structure, the <CRLF>
 end-of-line sequence is used to separate printing lines,
 but these format effectors are overridden by the ASA
 controls.

 3.1.2. DATA STRUCTURES

 In addition to different representation types, FTP allows the
 structure of a file to be specified. Three file structures are
 defined in FTP:

 file-structure, where there is no internal structure and
 the file is considered to be a
 continuous sequence of data bytes,

 record-structure, where the file is made up of sequential
 records,

 and page-structure, where the file is made up of independent
 indexed pages.

 File-structure is the default to be assumed if the STRUcture
 command has not been used but both file and record structures
 must be accepted for "text" files (i.e., files with TYPE ASCII
 or EBCDIC) by all FTP implementations. The structure of a file
 will affect both the transfer mode of a file (see the Section
 on Transmission Modes) and the interpretation and storage of
 the file.

 The "natural" structure of a file will depend on which host
 stores the file. A source-code file will usually be stored on
 an IBM Mainframe in fixed length records but on a DEC TOPS-20
 as a stream of characters partitioned into lines, for example
 by <CRLF>. If the transfer of files between such disparate
 sites is to be useful, there must be some way for one site to
 recognize the other's assumptions about the file.

 With some sites being naturally file-oriented and others
 naturally record-oriented there may be problems if a file with
 one structure is sent to a host oriented to the other. If a
 text file is sent with record-structure to a host which is file
 oriented, then that host should apply an internal
 transformation to the file based on the record structure.
 Obviously, this transformation should be useful, but it must
 also be invertible so that an identical file may be retrieved
 using record structure.

 In the case of a file being sent with file-structure to a
 record-oriented host, there exists the question of what
 criteria the host should use to divide the file into records
 which can be processed locally. If this division is necessary,
 the FTP implementation should use the end-of-line sequence,

 <CRLF> for ASCII, or <NL> for EBCDIC text files, as the
 delimiter. If an FTP implementation adopts this technique, it
 must be prepared to reverse the transformation if the file is
 retrieved with file-structure.

 3.1.2.1. FILE STRUCTURE

 File structure is the default to be assumed if the STRUcture
 command has not been used.

 In file-structure there is no internal structure and the
 file is considered to be a continuous sequence of data
 bytes.

 3.1.2.2. RECORD STRUCTURE

 Record structures must be accepted for "text" files (i.e.,
 files with TYPE ASCII or EBCDIC) by all FTP implementations.

 In record-structure the file is made up of sequential
 records.

 3.1.2.3. PAGE STRUCTURE

 To transmit files that are discontinuous, FTP defines a page
 structure. Files of this type are sometimes known as
 "random access files" or even as "holey files". In these
 files there is sometimes other information associated with
 the file as a whole (e.g., a file descriptor), or with a
 section of the file (e.g., page access controls), or both.
 In FTP, the sections of the file are called pages.

 To provide for various page sizes and associated
 information, each page is sent with a page header. The page
 header has the following defined fields:

 Header Length

 The number of logical bytes in the page header
 including this byte. The minimum header length is 4.

 Page Index

 The logical page number of this section of the file.
 This is not the transmission sequence number of this
 page, but the index used to identify this page of the
 file.

 Data Length

 The number of logical bytes in the page data. The
 minimum data length is 0.

 Page Type

 The type of page this is. The following page types
 are defined:

 0 = Last Page

 This is used to indicate the end of a paged
 structured transmission. The header length must
 be 4, and the data length must be 0.

 1 = Simple Page

 This is the normal type for simple paged files
 with no page level associated control
 information. The header length must be 4.

 2 = Descriptor Page

 This type is used to transmit the descriptive
 information for the file as a whole.

 3 = Access Controlled Page

 This type includes an additional header field
 for paged files with page level access control
 information. The header length must be 5.

 Optional Fields

 Further header fields may be used to supply per page
 control information, for example, per page access
 control.

 All fields are one logical byte in length. The logical byte
 size is specified by the TYPE command. See Appendix I for
 further details and a specific case at the page structure.

 A note of caution about parameters: a file must be stored and
 retrieved with the same parameters if the retrieved version is to

 be identical to the version originally transmitted. Conversely,
 FTP implementations must return a file identical to the original
 if the parameters used to store and retrieve a file are the same.

 3.2. ESTABLISHING DATA CONNECTIONS

 The mechanics of transferring data consists of setting up the data
 connection to the appropriate ports and choosing the parameters
 for transfer. Both the user and the server-DTPs have a default
 data port. The user-process default data port is the same as the
 control connection port (i.e., U). The server-process default
 data port is the port adjacent to the control connection port
 (i.e., L-1).

 The transfer byte size is 8-bit bytes. This byte size is relevant
 only for the actual transfer of the data; it has no bearing on
 representation of the data within a host's file system.

 The passive data transfer process (this may be a user-DTP or a
 second server-DTP) shall "listen" on the data port prior to
 sending a transfer request command. The FTP request command
 determines the direction of the data transfer. The server, upon
 receiving the transfer request, will initiate the data connection
 to the port. When the connection is established, the data
 transfer begins between DTP's, and the server-PI sends a
 confirming reply to the user-PI.

 Every FTP implementation must support the use of the default data
 ports, and only the USER-PI can initiate a change to non-default
 ports.

 It is possible for the user to specify an alternate data port by
 use of the PORT command. The user may want a file dumped on a TAC
 line printer or retrieved from a third party host. In the latter
 case, the user-PI sets up control connections with both
 server-PI's. One server is then told (by an FTP command) to
 "listen" for a connection which the other will initiate. The
 user-PI sends one server-PI a PORT command indicating the data
 port of the other. Finally, both are sent the appropriate
 transfer commands. The exact sequence of commands and replies
 sent between the user-controller and the servers is defined in the
 Section on FTP Replies.

 In general, it is the server's responsibility to maintain the data
 connection--to initiate it and to close it. The exception to this

 is when the user-DTP is sending the data in a transfer mode that
 requires the connection to be closed to indicate EOF. The server
 MUST close the data connection under the following conditions:

 1. The server has completed sending data in a transfer mode
 that requires a close to indicate EOF.

 2. The server receives an ABORT command from the user.

 3. The port specification is changed by a command from the
 user.

 4. The control connection is closed legally or otherwise.

 5. An irrecoverable error condition occurs.

 Otherwise the close is a server option, the exercise of which the
 server must indicate to the user-process by either a 250 or 226
 reply only.

 3.3. DATA CONNECTION MANAGEMENT

 Default Data Connection Ports: All FTP implementations must
 support use of the default data connection ports, and only the
 User-PI may initiate the use of non-default ports.

 Negotiating Non-Default Data Ports: The User-PI may specify a
 non-default user side data port with the PORT command. The
 User-PI may request the server side to identify a non-default
 server side data port with the PASV command. Since a connection
 is defined by the pair of addresses, either of these actions is
 enough to get a different data connection, still it is permitted
 to do both commands to use new ports on both ends of the data
 connection.

 Reuse of the Data Connection: When using the stream mode of data
 transfer the end of the file must be indicated by closing the
 connection. This causes a problem if multiple files are to be
 transfered in the session, due to need for TCP to hold the
 connection record for a time out period to guarantee the reliable
 communication. Thus the connection can not be reopened at once.

 There are two solutions to this problem. The first is to
 negotiate a non-default port. The second is to use another
 transfer mode.

 A comment on transfer modes. The stream transfer mode is

 inherently unreliable, since one can not determine if the
 connection closed prematurely or not. The other transfer modes
 (Block, Compressed) do not close the connection to indicate the
 end of file. They have enough FTP encoding that the data
 connection can be parsed to determine the end of the file.
 Thus using these modes one can leave the data connection open
 for multiple file transfers.

 3.4. TRANSMISSION MODES

 The next consideration in transferring data is choosing the
 appropriate transmission mode. There are three modes: one which
 formats the data and allows for restart procedures; one which also
 compresses the data for efficient transfer; and one which passes
 the data with little or no processing. In this last case the mode
 interacts with the structure attribute to determine the type of
 processing. In the compressed mode, the representation type
 determines the filler byte.

 All data transfers must be completed with an end-of-file (EOF)
 which may be explicitly stated or implied by the closing of the
 data connection. For files with record structure, all the
 end-of-record markers (EOR) are explicit, including the final one.
 For files transmitted in page structure a "last-page" page type is
 used.

 NOTE: In the rest of this section, byte means "transfer byte"
 except where explicitly stated otherwise.

 For the purpose of standardized transfer, the sending host will
 translate its internal end of line or end of record denotation

 into the representation prescribed by the transfer mode and file
 structure, and the receiving host will perform the inverse
 translation to its internal denotation. An IBM Mainframe record
 count field may not be recognized at another host, so the
 end-of-record information may be transferred as a two byte control
 code in Stream mode or as a flagged bit in a Block or Compressed
 mode descriptor. End-of-line in an ASCII or EBCDIC file with no
 record structure should be indicated by <CRLF> or <NL>,
 respectively. Since these transformations imply extra work for
 some systems, identical systems transferring non-record structured
 text files might wish to use a binary representation and stream
 mode for the transfer.

 The following transmission modes are defined in FTP:

 3.4.1. STREAM MODE

 The data is transmitted as a stream of bytes. There is no
 restriction on the representation type used; record structures
 are allowed.

 In a record structured file EOR and EOF will each be indicated
 by a two-byte control code. The first byte of the control code
 will be all ones, the escape character. The second byte will
 have the low order bit on and zeros elsewhere for EOR and the
 second low order bit on for EOF; that is, the byte will have
 value 1 for EOR and value 2 for EOF. EOR and EOF may be
 indicated together on the last byte transmitted by turning both
 low order bits on (i.e., the value 3). If a byte of all ones
 was intended to be sent as data, it should be repeated in the
 second byte of the control code.

 If the structure is a file structure, the EOF is indicated by
 the sending host closing the data connection and all bytes are
 data bytes.

 3.4.2. BLOCK MODE

 The file is transmitted as a series of data blocks preceded by
 one or more header bytes. The header bytes contain a count
 field, and descriptor code. The count field indicates the
 total length of the data block in bytes, thus marking the
 beginning of the next data block (there are no filler bits).
 The descriptor code defines: last block in the file (EOF) last
 block in the record (EOR), restart marker (see the Section on
 Error Recovery and Restart) or suspect data (i.e., the data
 being transferred is suspected of errors and is not reliable).
 This last code is NOT intended for error control within FTP.
 It is motivated by the desire of sites exchanging certain types
 of data (e.g., seismic or weather data) to send and receive all
 the data despite local errors (such as "magnetic tape read
 errors"), but to indicate in the transmission that certain
 portions are suspect). Record structures are allowed in this
 mode, and any representation type may be used.

 The header consists of the three bytes. Of the 24 bits of
 header information, the 16 low order bits shall represent byte
 count, and the 8 high order bits shall represent descriptor
 codes as shown below.

 Block Header

 +----------------+----------------+----------------+
 | Descriptor | Byte Count |
 | 8 bits | 16 bits |
 +----------------+----------------+----------------+

 The descriptor codes are indicated by bit flags in the
 descriptor byte. Four codes have been assigned, where each
 code number is the decimal value of the corresponding bit in
 the byte.

 Code Meaning

 128 End of data block is EOR
 64 End of data block is EOF
 32 Suspected errors in data block
 16 Data block is a restart marker

 With this encoding, more than one descriptor coded condition
 may exist for a particular block. As many bits as necessary
 may be flagged.

 The restart marker is embedded in the data stream as an
 integral number of 8-bit bytes representing printable
 characters in the language being used over the control
 connection (e.g., default--NVT-ASCII). <SP> (Space, in the
 appropriate language) must not be used WITHIN a restart marker.

 For example, to transmit a six-character marker, the following
 would be sent:

 +--------+--------+--------+
 |Descrptr| Byte count |
 |code= 16| = 6 |
 +--------+--------+--------+

 +--------+--------+--------+
 | Marker | Marker | Marker |
 | 8 bits | 8 bits | 8 bits |
 +--------+--------+--------+

 +--------+--------+--------+
 | Marker | Marker | Marker |
 | 8 bits | 8 bits | 8 bits |
 +--------+--------+--------+

 3.4.3. COMPRESSED MODE

 There are three kinds of information to be sent: regular data,
 sent in a byte string; compressed data, consisting of
 replications or filler; and control information, sent in a
 two-byte escape sequence. If n>0 bytes (up to 127) of regular
 data are sent, these n bytes are preceded by a byte with the
 left-most bit set to 0 and the right-most 7 bits containing the
 number n.

 Byte string:

 1 7 8 8
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |0| n | | d(1) | ... | d(n) |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 ^ ^
 |---n bytes---|
 of data

 String of n data bytes d(1),..., d(n)
 Count n must be positive.

 To compress a string of n replications of the data byte d, the
 following 2 bytes are sent:

 Replicated Byte:

 2 6 8

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 |1 0| n | | d |
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 A string of n filler bytes can be compressed into a single
 byte, where the filler byte varies with the representation
 type. If the type is ASCII or EBCDIC the filler byte is <SP>
 (Space, ASCII code 32, EBCDIC code 64). If the type is Image
 or Local byte the filler is a zero byte.

 Filler String:

 2 6
 +-+-+-+-+-+-+-+-+
 |1 1| n |
 +-+-+-+-+-+-+-+-+

 The escape sequence is a double byte, the first of which is the

 escape byte (all zeros) and the second of which contains
 descriptor codes as defined in Block mode. The descriptor
 codes have the same meaning as in Block mode and apply to the
 succeeding string of bytes.

 Compressed mode is useful for obtaining increased bandwidth on
 very large network transmissions at a little extra CPU cost.
 It can be most effectively used to reduce the size of printer
 files such as those generated by RJE hosts.

 3.5. ERROR RECOVERY AND RESTART

 There is no provision for detecting bits lost or scrambled in data
 transfer; this level of error control is handled by the TCP.
 However, a restart procedure is provided to protect users from
 gross system failures (including failures of a host, an
 FTP-process, or the underlying network).

 The restart procedure is defined only for the block and compressed
 modes of data transfer. It requires the sender of data to insert
 a special marker code in the data stream with some marker
 information. The marker information has meaning only to the
 sender, but must consist of printable characters in the default or
 negotiated language of the control connection (ASCII or EBCDIC).
 The marker could represent a bit-count, a record-count, or any
 other information by which a system may identify a data
 checkpoint. The receiver of data, if it implements the restart
 procedure, would then mark the corresponding position of this
 marker in the receiving system, and return this information to the
 user.

 In the event of a system failure, the user can restart the data
 transfer by identifying the marker point with the FTP restart
 procedure. The following example illustrates the use of the
 restart procedure.

 The sender of the data inserts an appropriate marker block in the
 data stream at a convenient point. The receiving host marks the
 corresponding data point in its file system and conveys the last
 known sender and receiver marker information to the user, either
 directly or over the control connection in a 110 reply (depending
 on who is the sender). In the event of a system failure, the user
 or controller process restarts the server at the last server
 marker by sending a restart command with server's marker code as
 its argument. The restart command is transmitted over the control

 connection and is immediately followed by the command (such as
 RETR, STOR or LIST) which was being executed when the system
 failure occurred.

4. FILE TRANSFER FUNCTIONS

 The communication channel from the user-PI to the server-PI is
 established as a TCP connection from the user to the standard server
 port. The user protocol interpreter is responsible for sending FTP
 commands and interpreting the replies received; the server-PI
 interprets commands, sends replies and directs its DTP to set up the
 data connection and transfer the data. If the second party to the
 data transfer (the passive transfer process) is the user-DTP, then it
 is governed through the internal protocol of the user-FTP host; if it
 is a second server-DTP, then it is governed by its PI on command from
 the user-PI. The FTP replies are discussed in the next section. In
 the description of a few of the commands in this section, it is
 helpful to be explicit about the possible replies.

 4.1. FTP COMMANDS

 4.1.1. ACCESS CONTROL COMMANDS

 The following commands specify access control identifiers
 (command codes are shown in parentheses).

 USER NAME (USER)

 The argument field is a Telnet string identifying the user.
 The user identification is that which is required by the
 server for access to its file system. This command will
 normally be the first command transmitted by the user after
 the control connections are made (some servers may require
 this). Additional identification information in the form of
 a password and/or an account command may also be required by
 some servers. Servers may allow a new USER command to be
 entered at any point in order to change the access control
 and/or accounting information. This has the effect of
 flushing any user, password, and account information already
 supplied and beginning the login sequence again. All
 transfer parameters are unchanged and any file transfer in
 progress is completed under the old access control
 parameters.

 PASSWORD (PASS)

 The argument field is a Telnet string specifying the user's
 password. This command must be immediately preceded by the
 user name command, and, for some sites, completes the user's
 identification for access control. Since password
 information is quite sensitive, it is desirable in general
 to "mask" it or suppress typeout. It appears that the
 server has no foolproof way to achieve this. It is
 therefore the responsibility of the user-FTP process to hide
 the sensitive password information.

 ACCOUNT (ACCT)

 The argument field is a Telnet string identifying the user's
 account. The command is not necessarily related to the USER
 command, as some sites may require an account for login and
 others only for specific access, such as storing files. In
 the latter case the command may arrive at any time.

 There are reply codes to differentiate these cases for the
 automation: when account information is required for login,
 the response to a successful PASSword command is reply code
 332. On the other hand, if account information is NOT
 required for login, the reply to a successful PASSword
 command is 230; and if the account information is needed for
 a command issued later in the dialogue, the server should
 return a 332 or 532 reply depending on whether it stores
 (pending receipt of the ACCounT command) or discards the
 command, respectively.

 CHANGE WORKING DIRECTORY (CWD)

 This command allows the user to work with a different
 directory or dataset for file storage or retrieval without
 altering his login or accounting information. Transfer
 parameters are similarly unchanged. The argument is a
 pathname specifying a directory or other system dependent
 file group designator.

 CHANGE TO PARENT DIRECTORY (CDUP)

 This command is a special case of CWD, and is included to
 simplify the implementation of programs for transferring
 directory trees between operating systems having different

 syntaxes for naming the parent directory. The reply codes
 shall be identical to the reply codes of CWD. See
 Appendix II for further details.

 STRUCTURE MOUNT (SMNT)

 This command allows the user to mount a different file
 system data structure without altering his login or
 accounting information. Transfer parameters are similarly
 unchanged. The argument is a pathname specifying a
 directory or other system dependent file group designator.

 REINITIALIZE (REIN)

 This command terminates a USER, flushing all I/O and account
 information, except to allow any transfer in progress to be
 completed. All parameters are reset to the default settings
 and the control connection is left open. This is identical
 to the state in which a user finds himself immediately after
 the control connection is opened. A USER command may be
 expected to follow.

 LOGOUT (QUIT)

 This command terminates a USER and if file transfer is not
 in progress, the server closes the control connection. If
 file transfer is in progress, the connection will remain
 open for result response and the server will then close it.
 If the user-process is transferring files for several USERs
 but does not wish to close and then reopen connections for
 each, then the REIN command should be used instead of QUIT.

 An unexpected close on the control connection will cause the
 server to take the effective action of an abort (ABOR) and a
 logout (QUIT).

 4.1.2. TRANSFER PARAMETER COMMANDS

 All data transfer parameters have default values, and the
 commands specifying data transfer parameters are required only
 if the default parameter values are to be changed. The default
 value is the last specified value, or if no value has been
 specified, the standard default value is as stated here. This
 implies that the server must "remember" the applicable default
 values. The commands may be in any order except that they must
 precede the FTP service request. The following commands
 specify data transfer parameters:

 DATA PORT (PORT)

 The argument is a HOST-PORT specification for the data port
 to be used in data connection. There are defaults for both
 the user and server data ports, and under normal
 circumstances this command and its reply are not needed. If

 this command is used, the argument is the concatenation of a
 32-bit internet host address and a 16-bit TCP port address.
 This address information is broken into 8-bit fields and the
 value of each field is transmitted as a decimal number (in
 character string representation). The fields are separated
 by commas. A port command would be:

 PORT h1,h2,h3,h4,p1,p2

 where h1 is the high order 8 bits of the internet host
 address.

 PASSIVE (PASV)

 This command requests the server-DTP to "listen" on a data
 port (which is not its default data port) and to wait for a
 connection rather than initiate one upon receipt of a
 transfer command. The response to this command includes the
 host and port address this server is listening on.

 REPRESENTATION TYPE (TYPE)

 The argument specifies the representation type as described
 in the Section on Data Representation and Storage. Several
 types take a second parameter. The first parameter is
 denoted by a single Telnet character, as is the second
 Format parameter for ASCII and EBCDIC; the second parameter
 for local byte is a decimal integer to indicate Bytesize.
 The parameters are separated by a <SP> (Space, ASCII code
 32).

 The following codes are assigned for type:

 \ /
 A - ASCII | | N - Non-print
 |-><-| T - Telnet format effectors
 E - EBCDIC| | C - Carriage Control (ASA)
 / \
 I - Image

 L <byte size> - Local byte Byte size

 The default representation type is ASCII Non-print. If the
 Format parameter is changed, and later just the first
 argument is changed, Format then returns to the Non-print
 default.

 FILE STRUCTURE (STRU)

 The argument is a single Telnet character code specifying
 file structure described in the Section on Data
 Representation and Storage.

 The following codes are assigned for structure:

 F - File (no record structure)
 R - Record structure
 P - Page structure

 The default structure is File.

 TRANSFER MODE (MODE)

 The argument is a single Telnet character code specifying
 the data transfer modes described in the Section on
 Transmission Modes.

 The following codes are assigned for transfer modes:

 S - Stream
 B - Block

 C - Compressed

 The default transfer mode is Stream.

 4.1.3. FTP SERVICE COMMANDS

 The FTP service commands define the file transfer or the file
 system function requested by the user. The argument of an FTP
 service command will normally be a pathname. The syntax of
 pathnames must conform to server site conventions (with
 standard defaults applicable), and the language conventions of
 the control connection. The suggested default handling is to
 use the last specified device, directory or file name, or the
 standard default defined for local users. The commands may be
 in any order except that a "rename from" command must be
 followed by a "rename to" command and the restart command must
 be followed by the interrupted service command (e.g., STOR or
 RETR). The data, when transferred in response to FTP service

 commands, shall always be sent over the data connection, except
 for certain informative replies. The following commands
 specify FTP service requests:

 RETRIEVE (RETR)

 This command causes the server-DTP to transfer a copy of the
 file, specified in the pathname, to the server- or user-DTP
 at the other end of the data connection. The status and
 contents of the file at the server site shall be unaffected.

 STORE (STOR)

 This command causes the server-DTP to accept the data
 transferred via the data connection and to store the data as
 a file at the server site. If the file specified in the
 pathname exists at the server site, then its contents shall
 be replaced by the data being transferred. A new file is
 created at the server site if the file specified in the
 pathname does not already exist.

 STORE UNIQUE (STOU)

 This command behaves like STOR except that the resultant
 file is to be created in the current directory under a name
 unique to that directory. The 250 Transfer Started response
 must include the name generated.

 APPEND (with create) (APPE)

 This command causes the server-DTP to accept the data
 transferred via the data connection and to store the data in
 a file at the server site. If the file specified in the
 pathname exists at the server site, then the data shall be
 appended to that file; otherwise the file specified in the
 pathname shall be created at the server site.

 ALLOCATE (ALLO)

 This command may be required by some servers to reserve
 sufficient storage to accommodate the new file to be
 transferred. The argument shall be a decimal integer
 representing the number of bytes (using the logical byte
 size) of storage to be reserved for the file. For files
 sent with record or page structure a maximum record or page
 size (in logical bytes) might also be necessary; this is
 indicated by a decimal integer in a second argument field of

 the command. This second argument is optional, but when
 present should be separated from the first by the three
 Telnet characters <SP> R <SP>. This command shall be
 followed by a STORe or APPEnd command. The ALLO command

 should be treated as a NOOP (no operation) by those servers
 which do not require that the maximum size of the file be
 declared beforehand, and those servers interested in only
 the maximum record or page size should accept a dummy value
 in the first argument and ignore it.

 RESTART (REST)

 The argument field represents the server marker at which
 file transfer is to be restarted. This command does not
 cause file transfer but skips over the file to the specified
 data checkpoint. This command shall be immediately followed
 by the appropriate FTP service command which shall cause
 file transfer to resume.

 RENAME FROM (RNFR)

 This command specifies the old pathname of the file which is
 to be renamed. This command must be immediately followed by
 a "rename to" command specifying the new file pathname.

 RENAME TO (RNTO)

 This command specifies the new pathname of the file
 specified in the immediately preceding "rename from"
 command. Together the two commands cause a file to be
 renamed.

 ABORT (ABOR)

 This command tells the server to abort the previous FTP
 service command and any associated transfer of data. The
 abort command may require "special action", as discussed in
 the Section on FTP Commands, to force recognition by the
 server. No action is to be taken if the previous command
 has been completed (including data transfer). The control
 connection is not to be closed by the server, but the data
 connection must be closed.

 There are two cases for the server upon receipt of this
 command: (1) the FTP service command was already completed,
 or (2) the FTP service command is still in progress.

 In the first case, the server closes the data connection
 (if it is open) and responds with a 226 reply, indicating
 that the abort command was successfully processed.

 In the second case, the server aborts the FTP service in
 progress and closes the data connection, returning a 426
 reply to indicate that the service request terminated
 abnormally. The server then sends a 226 reply,
 indicating that the abort command was successfully
 processed.

 DELETE (DELE)

 This command causes the file specified in the pathname to be
 deleted at the server site. If an extra level of protection
 is desired (such as the query, "Do you really wish to
 delete?"), it should be provided by the user-FTP process.

 REMOVE DIRECTORY (RMD)

 This command causes the directory specified in the pathname
 to be removed as a directory (if the pathname is absolute)
 or as a subdirectory of the current working directory (if
 the pathname is relative). See Appendix II.

 MAKE DIRECTORY (MKD)

 This command causes the directory specified in the pathname
 to be created as a directory (if the pathname is absolute)
 or as a subdirectory of the current working directory (if
 the pathname is relative). See Appendix II.

 PRINT WORKING DIRECTORY (PWD)

 This command causes the name of the current working
 directory to be returned in the reply. See Appendix II.

 LIST (LIST)

 This command causes a list to be sent from the server to the
 passive DTP. If the pathname specifies a directory or other
 group of files, the server should transfer a list of files
 in the specified directory. If the pathname specifies a
 file then the server should send current information on the
 file. A null argument implies the user's current working or
 default directory. The data transfer is over the data
 connection in type ASCII or type EBCDIC. (The user must

 ensure that the TYPE is appropriately ASCII or EBCDIC).
 Since the information on a file may vary widely from system
 to system, this information may be hard to use automatically
 in a program, but may be quite useful to a human user.

 NAME LIST (NLST)

 This command causes a directory listing to be sent from
 server to user site. The pathname should specify a
 directory or other system-specific file group descriptor; a
 null argument implies the current directory. The server
 will return a stream of names of files and no other
 information. The data will be transferred in ASCII or
 EBCDIC type over the data connection as valid pathname
 strings separated by <CRLF> or <NL>. (Again the user must
 ensure that the TYPE is correct.) This command is intended
 to return information that can be used by a program to
 further process the files automatically. For example, in
 the implementation of a "multiple get" function.

 SITE PARAMETERS (SITE)

 This command is used by the server to provide services
 specific to his system that are essential to file transfer
 but not sufficiently universal to be included as commands in
 the protocol. The nature of these services and the
 specification of their syntax can be stated in a reply to
 the HELP SITE command.

 SYSTEM (SYST)

 This command is used to find out the type of operating
 system at the server. The reply shall have as its first
 word one of the system names listed in the current version
 of the Assigned Numbers document [4].

 STATUS (STAT)

 This command shall cause a status response to be sent over
 the control connection in the form of a reply. The command
 may be sent during a file transfer (along with the Telnet IP
 and Synch signals--see the Section on FTP Commands) in which
 case the server will respond with the status of the
 operation in progress, or it may be sent between file
 transfers. In the latter case, the command may have an
 argument field. If the argument is a pathname, the command
 is analogous to the "list" command except that data shall be

 transferred over the control connection. If a partial
 pathname is given, the server may respond with a list of

 file names or attributes associated with that specification.
 If no argument is given, the server should return general
 status information about the server FTP process. This
 should include current values of all transfer parameters and
 the status of connections.

 HELP (HELP)

 This command shall cause the server to send helpful
 information regarding its implementation status over the
 control connection to the user. The command may take an
 argument (e.g., any command name) and return more specific
 information as a response. The reply is type 211 or 214.
 It is suggested that HELP be allowed before entering a USER
 command. The server may use this reply to specify
 site-dependent parameters, e.g., in response to HELP SITE.

 NOOP (NOOP)

 This command does not affect any parameters or previously
 entered commands. It specifies no action other than that the
 server send an OK reply.

 The File Transfer Protocol follows the specifications of the Telnet
 protocol for all communications over the control connection. Since
 the language used for Telnet communication may be a negotiated
 option, all references in the next two sections will be to the
 "Telnet language" and the corresponding "Telnet end-of-line code".
 Currently, one may take these to mean NVT-ASCII and <CRLF>. No other
 specifications of the Telnet protocol will be cited.

 FTP commands are "Telnet strings" terminated by the "Telnet end of
 line code". The command codes themselves are alphabetic characters
 terminated by the character <SP> (Space) if parameters follow and
 Telnet-EOL otherwise. The command codes and the semantics of
 commands are described in this section; the detailed syntax of
 commands is specified in the Section on Commands, the reply sequences
 are discussed in the Section on Sequencing of Commands and Replies,
 and scenarios illustrating the use of commands are provided in the
 Section on Typical FTP Scenarios.

 FTP commands may be partitioned as those specifying access-control
 identifiers, data transfer parameters, or FTP service requests.
 Certain commands (such as ABOR, STAT, QUIT) may be sent over the
 control connection while a data transfer is in progress. Some

 servers may not be able to monitor the control and data connections
 simultaneously, in which case some special action will be necessary
 to get the server's attention. The following ordered format is
 tentatively recommended:

 1. User system inserts the Telnet "Interrupt Process" (IP) signal
 in the Telnet stream.

 2. User system sends the Telnet "Synch" signal.

 3. User system inserts the command (e.g., ABOR) in the Telnet
 stream.

 4. Server PI, after receiving "IP", scans the Telnet stream for
 EXACTLY ONE FTP command.

 (For other servers this may not be necessary but the actions listed
 above should have no unusual effect.)

 4.2. FTP REPLIES

 Replies to File Transfer Protocol commands are devised to ensure
 the synchronization of requests and actions in the process of file
 transfer, and to guarantee that the user process always knows the
 state of the Server. Every command must generate at least one

 reply, although there may be more than one; in the latter case,
 the multiple replies must be easily distinguished. In addition,
 some commands occur in sequential groups, such as USER, PASS and
 ACCT, or RNFR and RNTO. The replies show the existence of an
 intermediate state if all preceding commands have been successful.
 A failure at any point in the sequence necessitates the repetition
 of the entire sequence from the beginning.

 The details of the command-reply sequence are made explicit in
 a set of state diagrams below.

 An FTP reply consists of a three digit number (transmitted as
 three alphanumeric characters) followed by some text. The number
 is intended for use by automata to determine what state to enter
 next; the text is intended for the human user. It is intended
 that the three digits contain enough encoded information that the
 user-process (the User-PI) will not need to examine the text and
 may either discard it or pass it on to the user, as appropriate.
 In particular, the text may be server-dependent, so there are
 likely to be varying texts for each reply code.

 A reply is defined to contain the 3-digit code, followed by Space

 <SP>, followed by one line of text (where some maximum line length
 has been specified), and terminated by the Telnet end-of-line
 code. There will be cases however, where the text is longer than
 a single line. In these cases the complete text must be bracketed
 so the User-process knows when it may stop reading the reply (i.e.
 stop processing input on the control connection) and go do other
 things. This requires a special format on the first line to
 indicate that more than one line is coming, and another on the
 last line to designate it as the last. At least one of these must
 contain the appropriate reply code to indicate the state of the
 transaction. To satisfy all factions, it was decided that both
 the first and last line codes should be the same.

 Thus the format for multi-line replies is that the first line
 will begin with the exact required reply code, followed
 immediately by a Hyphen, "-" (also known as Minus), followed by
 text. The last line will begin with the same code, followed
 immediately by Space <SP>, optionally some text, and the Telnet
 end-of-line code.

 For example:
 123-First line
 Second line
 234 A line beginning with numbers
 123 The last line

 The user-process then simply needs to search for the second
 occurrence of the same reply code, followed by <SP> (Space), at
 the beginning of a line, and ignore all intermediary lines. If
 an intermediary line begins with a 3-digit number, the Server
 must pad the front to avoid confusion.

 This scheme allows standard system routines to be used for
 reply information (such as for the STAT reply), with
 "artificial" first and last lines tacked on. In rare cases
 where these routines are able to generate three digits and a
 Space at the beginning of any line, the beginning of each
 text line should be offset by some neutral text, like Space.

 This scheme assumes that multi-line replies may not be nested.

 The three digits of the reply each have a special significance.
 This is intended to allow a range of very simple to very
 sophisticated responses by the user-process. The first digit
 denotes whether the response is good, bad or incomplete.
 (Referring to the state diagram), an unsophisticated user-process
 will be able to determine its next action (proceed as planned,

 redo, retrench, etc.) by simply examining this first digit. A
 user-process that wants to know approximately what kind of error
 occurred (e.g. file system error, command syntax error) may
 examine the second digit, reserving the third digit for the finest
 gradation of information (e.g., RNTO command without a preceding
 RNFR).

 There are five values for the first digit of the reply code:

 1yz Positive Preliminary reply

 The requested action is being initiated; expect another
 reply before proceeding with a new command. (The
 user-process sending another command before the
 completion reply would be in violation of protocol; but
 server-FTP processes should queue any commands that
 arrive while a preceding command is in progress.) This
 type of reply can be used to indicate that the command
 was accepted and the user-process may now pay attention
 to the data connections, for implementations where
 simultaneous monitoring is difficult. The server-FTP
 process may send at most, one 1yz reply per command.

 2yz Positive Completion reply

 The requested action has been successfully completed. A
 new request may be initiated.

 3yz Positive Intermediate reply

 The command has been accepted, but the requested action
 is being held in abeyance, pending receipt of further
 information. The user should send another command
 specifying this information. This reply is used in
 command sequence groups.

 4yz Transient Negative Completion reply

 The command was not accepted and the requested action did
 not take place, but the error condition is temporary and
 the action may be requested again. The user should
 return to the beginning of the command sequence, if any.
 It is difficult to assign a meaning to "transient",
 particularly when two distinct sites (Server- and
 User-processes) have to agree on the interpretation.
 Each reply in the 4yz category might have a slightly
 different time value, but the intent is that the

 user-process is encouraged to try again. A rule of thumb
 in determining if a reply fits into the 4yz or the 5yz
 (Permanent Negative) category is that replies are 4yz if
 the commands can be repeated without any change in
 command form or in properties of the User or Server
 (e.g., the command is spelled the same with the same
 arguments used; the user does not change his file access
 or user name; the server does not put up a new
 implementation.)

 5yz Permanent Negative Completion reply

 The command was not accepted and the requested action did
 not take place. The User-process is discouraged from
 repeating the exact request (in the same sequence). Even
 some "permanent" error conditions can be corrected, so
 the human user may want to direct his User-process to
 reinitiate the command sequence by direct action at some
 point in the future (e.g., after the spelling has been
 changed, or the user has altered his directory status.)

 The following function groupings are encoded in the second
 digit:

 x0z Syntax - These replies refer to syntax errors,
 syntactically correct commands that don't fit any
 functional category, unimplemented or superfluous
 commands.

 x1z Information - These are replies to requests for
 information, such as status or help.

 x2z Connections - Replies referring to the control and
 data connections.

 x3z Authentication and accounting - Replies for the login
 process and accounting procedures.

 x4z Unspecified as yet.

 x5z File system - These replies indicate the status of the
 Server file system vis-a-vis the requested transfer or
 other file system action.

 The third digit gives a finer gradation of meaning in each of
 the function categories, specified by the second digit. The
 list of replies below will illustrate this. Note that the text

 associated with each reply is recommended, rather than
 mandatory, and may even change according to the command with
 which it is associated. The reply codes, on the other hand,
 must strictly follow the specifications in the last section;
 that is, Server implementations should not invent new codes for
 situations that are only slightly different from the ones
 described here, but rather should adapt codes already defined.

 A command such as TYPE or ALLO whose successful execution
 does not offer the user-process any new information will
 cause a 200 reply to be returned. If the command is not
 implemented by a particular Server-FTP process because it
 has no relevance to that computer system, for example ALLO
 at a TOPS20 site, a Positive Completion reply is still
 desired so that the simple User-process knows it can proceed
 with its course of action. A 202 reply is used in this case
 with, for example, the reply text: "No storage allocation
 necessary." If, on the other hand, the command requests a
 non-site-specific action and is unimplemented, the response
 is 502. A refinement of that is the 504 reply for a command
 that is implemented, but that requests an unimplemented
 parameter.

 4.2.1 Reply Codes by Function Groups

 200 Command okay.
 500 Syntax error, command unrecognized.
 This may include errors such as command line too long.
 501 Syntax error in parameters or arguments.
 202 Command not implemented, superfluous at this site.
 502 Command not implemented.
 503 Bad sequence of commands.
 504 Command not implemented for that parameter.
 110 Restart marker reply.
 In this case, the text is exact and not left to the
 particular implementation; it must read:
 MARK yyyy = mmmm
 Where yyyy is User-process data stream marker, and mmmm
 server's equivalent marker (note the spaces between markers
 and "=").
 211 System status, or system help reply.
 212 Directory status.
 213 File status.
 214 Help message.
 On how to use the server or the meaning of a particular
 non-standard command. This reply is useful only to the

 human user.
 215 NAME system type.
 Where NAME is an official system name from the list in the
 Assigned Numbers document.

 120 Service ready in nnn minutes.
 220 Service ready for new user.
 221 Service closing control connection.
 Logged out if appropriate.
 421 Service not available, closing control connection.
 This may be a reply to any command if the service knows it
 must shut down.
 125 Data connection already open; transfer starting.
 225 Data connection open; no transfer in progress.
 425 Can't open data connection.
 226 Closing data connection.
 Requested file action successful (for example, file
 transfer or file abort).
 426 Connection closed; transfer aborted.
 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

 230 User logged in, proceed.
 530 Not logged in.
 331 User name okay, need password.
 332 Need account for login.
 532 Need account for storing files.
 150 File status okay; about to open data connection.
 250 Requested file action okay, completed.
 257 "PATHNAME" created.
 350 Requested file action pending further information.
 450 Requested file action not taken.
 File unavailable (e.g., file busy).
 550 Requested action not taken.
 File unavailable (e.g., file not found, no access).
 451 Requested action aborted. Local error in processing.
 551 Requested action aborted. Page type unknown.
 452 Requested action not taken.
 Insufficient storage space in system.
 552 Requested file action aborted.
 Exceeded storage allocation (for current directory or
 dataset).
 553 Requested action not taken.
 File name not allowed.

 4.2.2 Numeric Order List of Reply Codes

 110 Restart marker reply.
 In this case, the text is exact and not left to the
 particular implementation; it must read:
 MARK yyyy = mmmm
 Where yyyy is User-process data stream marker, and mmmm
 server's equivalent marker (note the spaces between markers
 and "=").
 120 Service ready in nnn minutes.
 125 Data connection already open; transfer starting.
 150 File status okay; about to open data connection.

 200 Command okay.
 202 Command not implemented, superfluous at this site.
 211 System status, or system help reply.
 212 Directory status.
 213 File status.
 214 Help message.
 On how to use the server or the meaning of a particular
 non-standard command. This reply is useful only to the
 human user.
 215 NAME system type.
 Where NAME is an official system name from the list in the
 Assigned Numbers document.
 220 Service ready for new user.

 221 Service closing control connection.
 Logged out if appropriate.
 225 Data connection open; no transfer in progress.
 226 Closing data connection.
 Requested file action successful (for example, file
 transfer or file abort).
 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).
 230 User logged in, proceed.
 250 Requested file action okay, completed.
 257 "PATHNAME" created.

 331 User name okay, need password.
 332 Need account for login.
 350 Requested file action pending further information.

 421 Service not available, closing control connection.
 This may be a reply to any command if the service knows it
 must shut down.
 425 Can't open data connection.
 426 Connection closed; transfer aborted.
 450 Requested file action not taken.
 File unavailable (e.g., file busy).
 451 Requested action aborted: local error in processing.
 452 Requested action not taken.
 Insufficient storage space in system.

 500 Syntax error, command unrecognized.
 This may include errors such as command line too long.
 501 Syntax error in parameters or arguments.
 502 Command not implemented.
 503 Bad sequence of commands.
 504 Command not implemented for that parameter.
 530 Not logged in.
 532 Need account for storing files.
 550 Requested action not taken.
 File unavailable (e.g., file not found, no access).
 551 Requested action aborted: page type unknown.
 552 Requested file action aborted.
 Exceeded storage allocation (for current directory or
 dataset).
 553 Requested action not taken.
 File name not allowed.

5. DECLARATIVE SPECIFICATIONS

 5.1. MINIMUM IMPLEMENTATION

 In order to make FTP workable without needless error messages, the
 following minimum implementation is required for all servers:

 TYPE - ASCII Non-print
 MODE - Stream
 STRUCTURE - File, Record
 COMMANDS - USER, QUIT, PORT,
 TYPE, MODE, STRU,
 for the default values
 RETR, STOR,
 NOOP.

 The default values for transfer parameters are:

 TYPE - ASCII Non-print
 MODE - Stream
 STRU - File

 All hosts must accept the above as the standard defaults.

 5.2. CONNECTIONS

 The server protocol interpreter shall "listen" on Port L. The
 user or user protocol interpreter shall initiate the full-duplex
 control connection. Server- and user- processes should follow the
 conventions of the Telnet protocol as specified in the
 ARPA-Internet Protocol Handbook [1]. Servers are under no
 obligation to provide for editing of command lines and may require
 that it be done in the user host. The control connection shall be
 closed by the server at the user's request after all transfers and
 replies are completed.

 The user-DTP must "listen" on the specified data port; this may be
 the default user port (U) or a port specified in the PORT command.
 The server shall initiate the data connection from his own default
 data port (L-1) using the specified user data port. The direction
 of the transfer and the port used will be determined by the FTP
 service command.

 Note that all FTP implementation must support data transfer using
 the default port, and that only the USER-PI may initiate the use
 of non-default ports.

 When data is to be transferred between two servers, A and B (refer
 to Figure 2), the user-PI, C, sets up control connections with
 both server-PI's. One of the servers, say A, is then sent a PASV
 command telling him to "listen" on his data port rather than
 initiate a connection when he receives a transfer service command.
 When the user-PI receives an acknowledgment to the PASV command,
 which includes the identity of the host and port being listened
 on, the user-PI then sends A's port, a, to B in a PORT command; a
 reply is returned. The user-PI may then send the corresponding
 service commands to A and B. Server B initiates the connection
 and the transfer proceeds. The command-reply sequence is listed
 below where the messages are vertically synchronous but
 horizontally asynchronous:

 User-PI - Server A User-PI - Server B
 ------------------ ------------------

 C->A : Connect C->B : Connect
 C->A : PASV
 A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2
 C->B : PORT A1,A2,A3,A4,a1,a2
 B->C : 200 Okay
 C->A : STOR C->B : RETR
 B->A : Connect to HOST-A, PORT-a

 Figure 3

 The data connection shall be closed by the server under the
 conditions described in the Section on Establishing Data
 Connections. If the data connection is to be closed following a
 data transfer where closing the connection is not required to
 indicate the end-of-file, the server must do so immediately.
 Waiting until after a new transfer command is not permitted
 because the user-process will have already tested the data
 connection to see if it needs to do a "listen"; (remember that the
 user must "listen" on a closed data port BEFORE sending the
 transfer request). To prevent a race condition here, the server
 sends a reply (226) after closing the data connection (or if the
 connection is left open, a "file transfer completed" reply (250)
 and the user-PI should wait for one of these replies before
 issuing a new transfer command).

 Any time either the user or server see that the connection is
 being closed by the other side, it should promptly read any
 remaining data queued on the connection and issue the close on its
 own side.

 5.3. COMMANDS

 The commands are Telnet character strings transmitted over the
 control connections as described in the Section on FTP Commands.
 The command functions and semantics are described in the Section
 on Access Control Commands, Transfer Parameter Commands, FTP
 Service Commands, and Miscellaneous Commands. The command syntax
 is specified here.

 The commands begin with a command code followed by an argument
 field. The command codes are four or fewer alphabetic characters.
 Upper and lower case alphabetic characters are to be treated
 identically. Thus, any of the following may represent the
 retrieve command:

 RETR Retr retr ReTr rETr

 This also applies to any symbols representing parameter values,
 such as A or a for ASCII TYPE. The command codes and the argument
 fields are separated by one or more spaces.

 The argument field consists of a variable length character string
 ending with the character sequence <CRLF> (Carriage Return, Line
 Feed) for NVT-ASCII representation; for other negotiated languages
 a different end of line character might be used. It should be
 noted that the server is to take no action until the end of line
 code is received.

 The syntax is specified below in NVT-ASCII. All characters in the
 argument field are ASCII characters including any ASCII
 represented decimal integers. Square brackets denote an optional
 argument field. If the option is not taken, the appropriate
 default is implied.

 5.3.1. FTP COMMANDS

 The following are the FTP commands:

 USER <SP> <username> <CRLF>
 PASS <SP> <password> <CRLF>
 ACCT <SP> <account-information> <CRLF>
 CWD <SP> <pathname> <CRLF>
 CDUP <CRLF>
 SMNT <SP> <pathname> <CRLF>
 QUIT <CRLF>
 REIN <CRLF>
 PORT <SP> <host-port> <CRLF>
 PASV <CRLF>
 TYPE <SP> <type-code> <CRLF>
 STRU <SP> <structure-code> <CRLF>
 MODE <SP> <mode-code> <CRLF>
 RETR <SP> <pathname> <CRLF>
 STOR <SP> <pathname> <CRLF>
 STOU <CRLF>
 APPE <SP> <pathname> <CRLF>
 ALLO <SP> <decimal-integer>
 [<SP> R <SP> <decimal-integer>] <CRLF>
 REST <SP> <marker> <CRLF>
 RNFR <SP> <pathname> <CRLF>
 RNTO <SP> <pathname> <CRLF>
 ABOR <CRLF>
 DELE <SP> <pathname> <CRLF>
 RMD <SP> <pathname> <CRLF>
 MKD <SP> <pathname> <CRLF>
 PWD <CRLF>
 LIST [<SP> <pathname>] <CRLF>
 NLST [<SP> <pathname>] <CRLF>
 SITE <SP> <string> <CRLF>
 SYST <CRLF>
 STAT [<SP> <pathname>] <CRLF>
 HELP [<SP> <string>] <CRLF>
 NOOP <CRLF>

 5.3.2. FTP COMMAND ARGUMENTS

 The syntax of the above argument fields (using BNF notation
 where applicable) is:

 <username> ::= <string>
 <password> ::= <string>
 <account-information> ::= <string>
 <string> ::= <char> | <char><string>
 <char> ::= any of the 128 ASCII characters except <CR> and
 <LF>
 <marker> ::= <pr-string>
 <pr-string> ::= <pr-char> | <pr-char><pr-string>
 <pr-char> ::= printable characters, any
 ASCII code 33 through 126
 <byte-size> ::= <number>
 <host-port> ::= <host-number>,<port-number>
 <host-number> ::= <number>,<number>,<number>,<number>
 <port-number> ::= <number>,<number>
 <number> ::= any decimal integer 1 through 255
 <form-code> ::= N | T | C
 <type-code> ::= A [<sp> <form-code>]
 | E [<sp> <form-code>]
 | I
 | L <sp> <byte-size>
 <structure-code> ::= F | R | P
 <mode-code> ::= S | B | C
 <pathname> ::= <string>
 <decimal-integer> ::= any decimal integer

 5.4. SEQUENCING OF COMMANDS AND REPLIES

 The communication between the user and server is intended to be an
 alternating dialogue. As such, the user issues an FTP command and
 the server responds with a prompt primary reply. The user should
 wait for this initial primary success or failure response before
 sending further commands.

 Certain commands require a second reply for which the user should
 also wait. These replies may, for example, report on the progress
 or completion of file transfer or the closing of the data
 connection. They are secondary replies to file transfer commands.

 One important group of informational replies is the connection
 greetings. Under normal circumstances, a server will send a 220
 reply, "awaiting input", when the connection is completed. The
 user should wait for this greeting message before sending any
 commands. If the server is unable to accept input right away, a
 120 "expected delay" reply should be sent immediately and a 220
 reply when ready. The user will then know not to hang up if there
 is a delay.

 Spontaneous Replies

 Sometimes "the system" spontaneously has a message to be sent
 to a user (usually all users). For example, "System going down
 in 15 minutes". There is no provision in FTP for such
 spontaneous information to be sent from the server to the user.
 It is recommended that such information be queued in the
 server-PI and delivered to the user-PI in the next reply
 (possibly making it a multi-line reply).

 The table below lists alternative success and failure replies for
 each command. These must be strictly adhered to; a server may
 substitute text in the replies, but the meaning and action implied
 by the code numbers and by the specific command reply sequence
 cannot be altered.

 Command-Reply Sequences

 In this section, the command-reply sequence is presented. Each
 command is listed with its possible replies; command groups are
 listed together. Preliminary replies are listed first (with
 their succeeding replies indented and under them), then
 positive and negative completion, and finally intermediary
 replies with the remaining commands from the sequence
 following. This listing forms the basis for the state
 diagrams, which will be presented separately.

 Connection Establishment
 120
 220
 220
 421
 Login
 USER
 230
 530
 500, 501, 421
 331, 332
 PASS
 230
 202
 530
 500, 501, 503, 421
 332
 ACCT
 230
 202
 530
 500, 501, 503, 421
 CWD
 250
 500, 501, 502, 421, 530, 550
 CDUP
 200
 500, 501, 502, 421, 530, 550
 SMNT
 202, 250
 500, 501, 502, 421, 530, 550
 Logout
 REIN
 120
 220
 220
 421
 500, 502
 QUIT
 221
 500

 Transfer parameters
 PORT
 200
 500, 501, 421, 530
 PASV
 227
 500, 501, 502, 421, 530
 MODE
 200
 500, 501, 504, 421, 530
 TYPE
 200
 500, 501, 504, 421, 530
 STRU
 200
 500, 501, 504, 421, 530

 File action commands

 ALLO
 200
 202
 500, 501, 504, 421, 530
 REST
 500, 501, 502, 421, 530
 350
 STOR
 125, 150
 (110)
 226, 250
 425, 426, 451, 551, 552
 532, 450, 452, 553
 500, 501, 421, 530
 STOU
 125, 150
 (110)
 226, 250
 425, 426, 451, 551, 552
 532, 450, 452, 553
 500, 501, 421, 530
 RETR
 125, 150
 (110)
 226, 250
 425, 426, 451
 450, 550
 500, 501, 421, 530

 LIST
 125, 150
 226, 250
 425, 426, 451
 450
 500, 501, 502, 421, 530
 NLST
 125, 150
 226, 250
 425, 426, 451
 450
 500, 501, 502, 421, 530
 APPE
 125, 150
 (110)
 226, 250
 425, 426, 451, 551, 552
 532, 450, 550, 452, 553
 500, 501, 502, 421, 530
 RNFR
 450, 550
 500, 501, 502, 421, 530
 350
 RNTO
 250
 532, 553
 500, 501, 502, 503, 421, 530
 DELE
 250
 450, 550
 500, 501, 502, 421, 530
 RMD
 250
 500, 501, 502, 421, 530, 550
 MKD
 257
 500, 501, 502, 421, 530, 550
 PWD
 257
 500, 501, 502, 421, 550
 ABOR
 225, 226

 500, 501, 502, 421

 Informational commands

 SYST
 215
 500, 501, 502, 421
 STAT
 211, 212, 213
 450
 500, 501, 502, 421, 530
 HELP
 211, 214
 500, 501, 502, 421

 Miscellaneous commands

 SITE
 200
 202
 500, 501, 530
 NOOP
 200
 500 421

6. STATE DIAGRAMS

 Here we present state diagrams for a very simple minded FTP
 implementation. Only the first digit of the reply codes is used.
 There is one state diagram for each group of FTP commands or command
 sequences.

 The command groupings were determined by constructing a model for
 each command then collecting together the commands with structurally
 identical models.

 For each command or command sequence there are three possible
 outcomes: success (S), failure (F), and error (E). In the state
 diagrams below we use the symbol B for "begin", and the symbol W for
 "wait for reply".

 We first present the diagram that represents the largest group of FTP
 commands:

 1,3 +---+
 ----------->| E |
 | +---+
 |
 +---+ cmd +---+ 2 +---+
 | B |---------->| W |---------->| S |
 +---+ +---+ +---+
 |
 | 4,5 +---+
 ----------->| F |
 +---+

 This diagram models the commands:

 ABOR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV,
 QUIT, SITE, PORT, SYST, STAT, RMD, MKD, PWD, STRU, and TYPE.

 The other large group of commands is represented by a very similar
 diagram:

 3 +---+

 ----------->| E |
 | +---+
 |
 +---+ cmd +---+ 2 +---+
 | B |---------->| W |---------->| S |
 +---+ --->+---+ +---+
 | | |
 | | | 4,5 +---+
 | 1 | ----------->| F |
 ----- +---+

 This diagram models the commands:

 APPE, LIST, NLST, REIN, RETR, STOR, and STOU.

 Note that this second model could also be used to represent the first
 group of commands, the only difference being that in the first group
 the 100 series replies are unexpected and therefore treated as error,
 while the second group expects (some may require) 100 series replies.
 Remember that at most, one 100 series reply is allowed per command.

 The remaining diagrams model command sequences, perhaps the simplest
 of these is the rename sequence:

 +---+ RNFR +---+ 1,2 +---+
 | B |---------->| W |---------->| E |
 +---+ +---+ -->+---+
 | | |
 3 | | 4,5 |
 -------------- ------ |
 | | | +---+
 | ------------->| S |
 | | 1,3 | | +---+
 | 2| --------
 | | | |
 V | | |
 +---+ RNTO +---+ 4,5 ----->+---+
 | |---------->| W |---------->| F |
 +---+ +---+ +---+

 The next diagram is a simple model of the Restart command:

 +---+ REST +---+ 1,2 +---+
 | B |---------->| W |---------->| E |
 +---+ +---+ -->+---+
 | | |
 3 | | 4,5 |
 -------------- ------ |
 | | | +---+
 | ------------->| S |
 | | 3 | | +---+
 | 2| --------
 | | | |
 V | | |
 +---+ cmd +---+ 4,5 ----->+---+
 | |---------->| W |---------->| F |
 +---+ -->+---+ +---+
 | |
 | 1 |

 Where "cmd" is APPE, STOR, or RETR.

 We note that the above three models are similar. The Restart differs
 from the Rename two only in the treatment of 100 series replies at
 the second stage, while the second group expects (some may require)

 100 series replies. Remember that at most, one 100 series reply is
 allowed per command.

 The most complicated diagram is for the Login sequence:

 1
 +---+ USER +---+------------->+---+
 | B |---------->| W | 2 ---->| E |
 +---+ +---+------ | -->+---+
 | | | | |
 3 | | 4,5 | | |
 -------------- ----- | | |
 | | | | |
 | | | | |
 | --------- |
 | 1| | | |
 V | | | |
 +---+ PASS +---+ 2 | ------>+---+
 | |---------->| W |------------->| S |
 +---+ +---+ ---------->+---+
 | | | | |
 3 | |4,5| | |
 -------------- -------- |
 | | | | |
 | | | | |
 | -----------
 | 1,3| | | |
 V | 2| | |
 +---+ ACCT +---+-- | ----->+---+
 | |---------->| W | 4,5 -------->| F |
 +---+ +---+------------->+---+

 Finally, we present a generalized diagram that could be used to model
 the command and reply interchange:

 | |
 Begin | |
 | V |
 | +---+ cmd +---+ 2 +---+ |
 -->| |------->| |---------->| | |
 | | | W | | S |-----|
 -->| | -->| |----- | | |
 | +---+ | +---+ 4,5 | +---+ | | | | | |
 | | | | | | |
 | | | 1| |3 | +---+ |
 | | | | | | | | |
 | | ---- | ---->| F |-----
 | | | | |
 | | | +---+

 |
 |
 V
 End

7. TYPICAL FTP SCENARIO

 User at host U wanting to transfer files to/from host S:

 In general, the user will communicate to the server via a mediating
 user-FTP process. The following may be a typical scenario. The
 user-FTP prompts are shown in parentheses, '---->' represents
 commands from host U to host S, and '<----' represents replies from
 host S to host U.

 LOCAL COMMANDS BY USER ACTION INVOLVED

 ftp (host) multics<CR> Connect to host S, port L,
 establishing control connections.
 <---- 220 Service ready <CRLF>.
 username Doe <CR> USER Doe<CRLF>---->
 <---- 331 User name ok,
 need password<CRLF>.
 password mumble <CR> PASS mumble<CRLF>---->
 <---- 230 User logged in<CRLF>.
 retrieve (local type) ASCII<CR>
 (local pathname) test 1 <CR> User-FTP opens local file in ASCII.
 (for. pathname) test.pl1<CR> RETR test.pl1<CRLF> ---->
 <---- 150 File status okay;
 about to open data
 connection<CRLF>.
 Server makes data connection
 to port U.

 <---- 226 Closing data connection,
 file transfer successful<CRLF>.
 type Image<CR> TYPE I<CRLF> ---->
 <---- 200 Command OK<CRLF>
 store (local type) image<CR>
 (local pathname) file dump<CR> User-FTP opens local file in Image.
 (for.pathname) >udd>cn>fd<CR> STOR >udd>cn>fd<CRLF> ---->
 <---- 550 Access denied<CRLF>
 terminate QUIT <CRLF> ---->
 Server closes all
 connections.

8. CONNECTION ESTABLISHMENT

 The FTP control connection is established via TCP between the user
 process port U and the server process port L. This protocol is
 assigned the service port 21 (25 octal), that is L=21.

APPENDIX I - PAGE STRUCTURE

 The need for FTP to support page structure derives principally from
 the need to support efficient transmission of files between TOPS-20
 systems, particularly the files used by NLS.

 The file system of TOPS-20 is based on the concept of pages. The
 operating system is most efficient at manipulating files as pages.
 The operating system provides an interface to the file system so that
 many applications view files as sequential streams of characters.
 However, a few applications use the underlying page structures
 directly, and some of these create holey files.

 A TOPS-20 disk file consists of four things: a pathname, a page
 table, a (possibly empty) set of pages, and a set of attributes.

 The pathname is specified in the RETR or STOR command. It includes
 the directory name, file name, file name extension, and generation
 number.

 The page table contains up to 2**18 entries. Each entry may be
 EMPTY, or may point to a page. If it is not empty, there are also
 some page-specific access bits; not all pages of a file need have the
 same access protection.

 A page is a contiguous set of 512 words of 36 bits each.

 The attributes of the file, in the File Descriptor Block (FDB),
 contain such things as creation time, write time, read time, writer's
 byte-size, end-of-file pointer, count of reads and writes, backup
 system tape numbers, etc.

 Note that there is NO requirement that entries in the page table be

 contiguous. There may be empty page table slots between occupied
 ones. Also, the end of file pointer is simply a number. There is no
 requirement that it in fact point at the "last" datum in the file.
 Ordinary sequential I/O calls in TOPS-20 will cause the end of file
 pointer to be left after the last datum written, but other operations
 may cause it not to be so, if a particular programming system so
 requires.

 In fact, in both of these special cases, "holey" files and
 end-of-file pointers NOT at the end of the file, occur with NLS data
 files.

 The TOPS-20 paged files can be sent with the FTP transfer parameters:
 TYPE L 36, STRU P, and MODE S (in fact, any mode could be used).

 Each page of information has a header. Each header field, which is a
 logical byte, is a TOPS-20 word, since the TYPE is L 36.

 The header fields are:

 Word 0: Header Length.

 The header length is 5.

 Word 1: Page Index.

 If the data is a disk file page, this is the number of that
 page in the file's page map. Empty pages (holes) in the file
 are simply not sent. Note that a hole is NOT the same as a
 page of zeros.

 Word 2: Data Length.

 The number of data words in this page, following the header.
 Thus, the total length of the transmission unit is the Header
 Length plus the Data Length.

 Word 3: Page Type.

 A code for what type of chunk this is. A data page is type 3,
 the FDB page is type 2.

 Word 4: Page Access Control.

 The access bits associated with the page in the file's page
 map. (This full word quantity is put into AC2 of an SPACS by
 the program reading from net to disk.)

 After the header are Data Length data words. Data Length is
 currently either 512 for a data page or 31 for an FDB. Trailing
 zeros in a disk file page may be discarded, making Data Length less
 than 512 in that case.

APPENDIX II - DIRECTORY COMMANDS

 Since UNIX has a tree-like directory structure in which directories
 are as easy to manipulate as ordinary files, it is useful to expand
 the FTP servers on these machines to include commands which deal with
 the creation of directories. Since there are other hosts on the
 ARPA-Internet which have tree-like directories (including TOPS-20 and
 Multics), these commands are as general as possible.

 Four directory commands have been added to FTP:

 MKD pathname

 Make a directory with the name "pathname".

 RMD pathname

 Remove the directory with the name "pathname".

 PWD

 Print the current working directory name.

 CDUP

 Change to the parent of the current working directory.

 The "pathname" argument should be created (removed) as a
 subdirectory of the current working directory, unless the "pathname"
 string contains sufficient information to specify otherwise to the
 server, e.g., "pathname" is an absolute pathname (in UNIX and
 Multics), or pathname is something like "<abso.lute.path>" to
 TOPS-20.

 REPLY CODES

 The CDUP command is a special case of CWD, and is included to
 simplify the implementation of programs for transferring directory
 trees between operating systems having different syntaxes for
 naming the parent directory. The reply codes for CDUP be
 identical to the reply codes of CWD.

 The reply codes for RMD be identical to the reply codes for its
 file analogue, DELE.

 The reply codes for MKD, however, are a bit more complicated. A
 freshly created directory will probably be the object of a future

 CWD command. Unfortunately, the argument to MKD may not always be
 a suitable argument for CWD. This is the case, for example, when
 a TOPS-20 subdirectory is created by giving just the subdirectory
 name. That is, with a TOPS-20 server FTP, the command sequence

 MKD MYDIR
 CWD MYDIR

 will fail. The new directory may only be referred to by its
 "absolute" name; e.g., if the MKD command above were issued while
 connected to the directory <DFRANKLIN>, the new subdirectory
 could only be referred to by the name <DFRANKLIN.MYDIR>.

 Even on UNIX and Multics, however, the argument given to MKD may
 not be suitable. If it is a "relative" pathname (i.e., a pathname
 which is interpreted relative to the current directory), the user
 would need to be in the same current directory in order to reach
 the subdirectory. Depending on the application, this may be
 inconvenient. It is not very robust in any case.

 To solve these problems, upon successful completion of an MKD
 command, the server should return a line of the form:

 257<space>"<directory-name>"<space><commentary>

 That is, the server will tell the user what string to use when
 referring to the created directory. The directory name can
 contain any character; embedded double-quotes should be escaped by
 double-quotes (the "quote-doubling" convention).

 For example, a user connects to the directory /usr/dm, and creates
 a subdirectory, named pathname:

 CWD /usr/dm
 200 directory changed to /usr/dm
 MKD pathname
 257 "/usr/dm/pathname" directory created

 An example with an embedded double quote:

 MKD foo"bar
 257 "/usr/dm/foo""bar" directory created
 CWD /usr/dm/foo"bar
 200 directory changed to /usr/dm/foo"bar

 The prior existence of a subdirectory with the same name is an
 error, and the server must return an "access denied" error reply
 in that case.

 CWD /usr/dm
 200 directory changed to /usr/dm
 MKD pathname
 521-"/usr/dm/pathname" directory already exists;
 521 taking no action.

 The failure replies for MKD are analogous to its file creating
 cousin, STOR. Also, an "access denied" return is given if a file
 name with the same name as the subdirectory will conflict with the
 creation of the subdirectory (this is a problem on UNIX, but
 shouldn't be one on TOPS-20).

 Essentially because the PWD command returns the same type of
 information as the successful MKD command, the successful PWD
 command uses the 257 reply code as well.

 SUBTLETIES

 Because these commands will be most useful in transferring
 subtrees from one machine to another, carefully observe that the
 argument to MKD is to be interpreted as a sub-directory of the
 current working directory, unless it contains enough information
 for the destination host to tell otherwise. A hypothetical
 example of its use in the TOPS-20 world:

 CWD <some.where>
 200 Working directory changed
 MKD overrainbow
 257 "<some.where.overrainbow>" directory created
 CWD overrainbow
 431 No such directory
 CWD <some.where.overrainbow>
 200 Working directory changed

 CWD <some.where>
 200 Working directory changed to <some.where>
 MKD <unambiguous>
 257 "<unambiguous>" directory created
 CWD <unambiguous>

 Note that the first example results in a subdirectory of the
 connected directory. In contrast, the argument in the second
 example contains enough information for TOPS-20 to tell that the

 <unambiguous> directory is a top-level directory. Note also that
 in the first example the user "violated" the protocol by
 attempting to access the freshly created directory with a name
 other than the one returned by TOPS-20. Problems could have
 resulted in this case had there been an <overrainbow> directory;
 this is an ambiguity inherent in some TOPS-20 implementations.
 Similar considerations apply to the RMD command. The point is
 this: except where to do so would violate a host's conventions for
 denoting relative versus absolute pathnames, the host should treat
 the operands of the MKD and RMD commands as subdirectories. The
 257 reply to the MKD command must always contain the absolute
 pathname of the created directory.

APPENDIX III - RFCs on FTP

 Bhushan, Abhay, "A File Transfer Protocol", RFC 114 (NIC 5823),
 MIT-Project MAC, 16 April 1971.

 Harslem, Eric, and John Heafner, "Comments on RFC 114 (A File
 Transfer Protocol)", RFC 141 (NIC 6726), RAND, 29 April 1971.

 Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 172
 (NIC 6794), MIT-Project MAC, 23 June 1971.

 Braden, Bob, "Comments on DTP and FTP Proposals", RFC 238 (NIC 7663),
 UCLA/CCN, 29 September 1971.

 Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265
 (NIC 7813), MIT-Project MAC, 17 November 1971.

 McKenzie, Alex, "A Suggested Addition to File Transfer Protocol",
 RFC 281 (NIC 8163), BBN, 8 December 1971.

 Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File
 Transfer Protocol", RFC 294 (NIC 8304), MIT-Project MAC,
 25 January 1972.

 Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (NIC 10596),
 MIT-Project MAC, 8 July 1972.

 Bhushan, Abhay, "Comments on the File Transfer Protocol (RFC 354)",
 RFC 385 (NIC 11357), MIT-Project MAC, 18 August 1972.

 Hicks, Greg, "User FTP Documentation", RFC 412 (NIC 12404), Utah,
 27 November 1972.

 Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further
 Comments", RFC 414 (NIC 12406), MIT-Project MAC, 20 November 1972.

 Braden, Bob, "Comments on File Transfer Protocol", RFC 430
 (NIC 13299), UCLA/CCN, 7 February 1973.

 Thomas, Bob, and Bob Clements, "FTP Server-Server Interaction",
 RFC 438 (NIC 13770), BBN, 15 January 1973.

 Braden, Bob, "Print Files in FTP", RFC 448 (NIC 13299), UCLA/CCN,
 27 February 1973.

 McKenzie, Alex, "File Transfer Protocol", RFC 454 (NIC 14333), BBN,
 16 February 1973.

 Bressler, Bob, and Bob Thomas, "Mail Retrieval via FTP", RFC 458
 (NIC 14378), BBN-NET and BBN-TENEX, 20 February 1973.

 Neigus, Nancy, "File Transfer Protocol", RFC 542 (NIC 17759), BBN,
 12 July 1973.

 Krilanovich, Mark, and George Gregg, "Comments on the File Transfer
 Protocol", RFC 607 (NIC 21255), UCSB, 7 January 1974.

 Pogran, Ken, and Nancy Neigus, "Response to RFC 607 - Comments on the
 File Transfer Protocol", RFC 614 (NIC 21530), BBN, 28 January 1974.

 Krilanovich, Mark, George Gregg, Wayne Hathaway, and Jim White,
 "Comments on the File Transfer Protocol", RFC 624 (NIC 22054), UCSB,
 Ames Research Center, SRI-ARC, 28 February 1974.

 Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463
 (NIC 14573), MIT-DMCG, 21 February 1973.

 Braden, Bob, "FTP Data Compression", RFC 468 (NIC 14742), UCLA/CCN,
 8 March 1973.

 Bhushan, Abhay, "FTP and Network Mail System", RFC 475 (NIC 14919),
 MIT-DMCG, 6 March 1973.

 Bressler, Bob, and Bob Thomas "FTP Server-Server Interaction - II",
 RFC 478 (NIC 14947), BBN-NET and BBN-TENEX, 26 March 1973.

 White, Jim, "Use of FTP by the NIC Journal", RFC 479 (NIC 14948),
 SRI-ARC, 8 March 1973.

 White, Jim, "Host-Dependent FTP Parameters", RFC 480 (NIC 14949),
 SRI-ARC, 8 March 1973.

 Padlipsky, Mike, "An FTP Command-Naming Problem", RFC 506
 (NIC 16157), MIT-Multics, 26 June 1973.

 Day, John, "Memo to FTP Group (Proposal for File Access Protocol)",
 RFC 520 (NIC 16819), Illinois, 25 June 1973.

 Merryman, Robert, "The UCSD-CC Server-FTP Facility", RFC 532
 (NIC 17451), UCSD-CC, 22 June 1973.

 Braden, Bob, "TENEX FTP Problem", RFC 571 (NIC 18974), UCLA/CCN,
 15 November 1973.

 McKenzie, Alex, and Jon Postel, "Telnet and FTP Implementation -
 Schedule Change", RFC 593 (NIC 20615), BBN and MITRE,
 29 November 1973.

 Sussman, Julie, "FTP Error Code Usage for More Reliable Mail
 Service", RFC 630 (NIC 30237), BBN, 10 April 1974.

 Postel, Jon, "Revised FTP Reply Codes", RFC 640 (NIC 30843),
 UCLA/NMC, 5 June 1974.

 Harvey, Brian, "Leaving Well Enough Alone", RFC 686 (NIC 32481),
 SU-AI, 10 May 1975.

 Harvey, Brian, "One More Try on the FTP", RFC 691 (NIC 32700), SU-AI,
 28 May 1975.

 Lieb, J., "CWD Command of FTP", RFC 697 (NIC 32963), 14 July 1975.

 Harrenstien, Ken, "FTP Extension: XSEN", RFC 737 (NIC 42217), SRI-KL,
 31 October 1977.

 Harrenstien, Ken, "FTP Extension: XRSQ/XRCP", RFC 743 (NIC 42758),
 SRI-KL, 30 December 1977.

 Lebling, P. David, "Survey of FTP Mail and MLFL", RFC 751, MIT,
 10 December 1978.

 Postel, Jon, "File Transfer Protocol Specification", RFC 765, ISI,
 June 1980.

 Mankins, David, Dan Franklin, and Buzz Owen, "Directory Oriented FTP
 Commands", RFC 776, BBN, December 1980.

 Padlipsky, Michael, "FTP Unique-Named Store Command", RFC 949, MITRE,
 July 1985.

REFERENCES

 [1] Feinler, Elizabeth, "Internet Protocol Transition Workbook",
 Network Information Center, SRI International, March 1982.

 [2] Postel, Jon, "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", RFC 793, DARPA, September 1981.

 [3] Postel, Jon, and Joyce Reynolds, "Telnet Protocol
 Specification", RFC 854, ISI, May 1983.

 [4] Reynolds, Joyce, and Jon Postel, "Assigned Numbers", RFC 943,
 ISI, April 1985.

RFC 1123 (FTP section) Index

4.1  FILE TRANSFER PROTOCOL    –   FTP   

4.1.1     INTRODUCTION

4.1.2.     PROTOCOL WALK-THROUGH

4.1.2.1     LOCAL Type: RFC-959 Section 3.1.1.4 

4.1.2.2     Telnet Format Control: RFC-959 Section 3.1.1.5.2 

4.1.2.3     Page Structure: RFC-959 Section 3.1.2.3 and Appendix I 

4.1.2.4     Data Structure Transformations: RFC-959 Section 3.1.2 

4.1.2.5     Data Connection Management: RFC-959 Section 3.3 

4.1.2.6     PASV Command: RFC-959 Section 4.1.2 

4.1.2.7     LIST and NLST Commands: RFC-959 Section 4.1.3 

4.1.2.8     SITE Command: RFC-959 Section 4.1.3

4.1.2.9     STOU Command: RFC-959 Section 4.1.3

4.1.2.10 Telnet End-of-line Code: RFC-959

4.1.2.11  FTP Replies: RFC-959 Section 4.2

4.1.2.12     Connections: RFC-959 Section 5.2

4.1.2.13     Minimum Implementation: RFC-959 Section 5.1

4.1.3     SPECIFIC ISSUES

4.1.3.1     Non-standard Command Verbs

4.1.3.2 Idle Timeout

4.1.3.3     Concurrency of Data and Control

4.1.3.4     FTP Restart Mechanism

4.1.4     FTP/USER INTERFACE

4.1.4.1     Pathname Specification

4.1.4.2 "QUOTE" Command

4.1.4.3     Displaying Replies to User

4.1.4.4  Maintaining Synchronization

4.1.5       FTP REQUIREMENTS SUMMARY

RFC 1123 (FTP section)
Network Working Group J. Postel (ISI)
Request for Comments: 1121 L. Kleinrock (UCLA)
 V. Cerf (NRI)
 B. Boehm (UCLA)
 September 1989

 Act One - The Poems

Status of this Memo

 This RFC presents a collection of poems that were presented at "Act
 One", a symposium held partially in celebration of the 20th
 anniversary of the ARPANET. Distribution of this memo is unlimited.

4.1 FILE TRANSFER PROTOCOL -- FTP

 4.1.1 INTRODUCTION

 The File Transfer Protocol FTP is the primary Internet standard
 for file transfer. The current specification is contained in
 RFC-959 [FTP:1].

 FTP uses separate simultaneous TCP connections for control and
 for data transfer. The FTP protocol includes many features,
 some of which are not commonly implemented. However, for every
 feature in FTP, there exists at least one implementation. The
 minimum implementation defined in RFC-959 was too small, so a
 somewhat larger minimum implementation is defined here.

 Internet users have been unnecessarily burdened for years by
 deficient FTP implementations. Protocol implementors have
 suffered from the erroneous opinion that implementing FTP ought
 to be a small and trivial task. This is wrong, because FTP has
 a user interface, because it has to deal (correctly) with the
 whole variety of communication and operating system errors that
 may occur, and because it has to handle the great diversity of
 real file systems in the world.

 4.1.2. PROTOCOL WALK-THROUGH

 4.1.2.1 LOCAL Type: RFC-959 Section 3.1.1.4

 An FTP program MUST support TYPE I ("IMAGE" or binary type)
 as well as TYPE L 8 ("LOCAL" type with logical byte size 8).
 A machine whose memory is organized into m-bit words, where
 m is not a multiple of 8, MAY also support TYPE L m.

 DISCUSSION:
 The command "TYPE L 8" is often required to transfer
 binary data between a machine whose memory is organized
 into (e.g.) 36-bit words and a machine with an 8-bit
 byte organization. For an 8-bit byte machine, TYPE L 8
 is equivalent to IMAGE.

 "TYPE L m" is sometimes specified to the FTP programs
 on two m-bit word machines to ensure the correct
 transfer of a native-mode binary file from one machine
 to the other. However, this command should have the
 same effect on these machines as "TYPE I".

 4.1.2.2 Telnet Format Control: RFC-959 Section 3.1.1.5.2

 A host that makes no distinction between TYPE N and TYPE T
 SHOULD implement TYPE T to be identical to TYPE N.

 DISCUSSION:
 This provision should ease interoperation with hosts
 that do make this distinction.

 Many hosts represent text files internally as strings
 of ASCII characters, using the embedded ASCII format
 effector characters (LF, BS, FF, ...) to control the
 format when a file is printed. For such hosts, there
 is no distinction between "print" files and other
 files. However, systems that use record structured
 files typically need a special format for printable
 files (e.g., ASA carriage control). For the latter
 hosts, FTP allows a choice of TYPE N or TYPE T.

 4.1.2.3 Page Structure: RFC-959 Section 3.1.2.3 and Appendix I

 Implementation of page structure is NOT RECOMMENDED in
 general. However, if a host system does need to implement
 FTP for "random access" or "holey" files, it MUST use the
 defined page structure format rather than define a new
 private FTP format.

 4.1.2.4 Data Structure Transformations: RFC-959 Section 3.1.2

 An FTP transformation between record-structure and file-
 structure SHOULD be invertible, to the extent possible while
 making the result useful on the target host.

 DISCUSSION:
 RFC-959 required strict invertibility between record-
 structure and file-structure, but in practice,
 efficiency and convenience often preclude it.
 Therefore, the requirement is being relaxed. There are
 two different objectives for transferring a file:
 processing it on the target host, or just storage. For
 storage, strict invertibility is important. For
 processing, the file created on the target host needs
 to be in the format expected by application programs on
 that host.

 As an example of the conflict, imagine a record-
 oriented operating system that requires some data files
 to have exactly 80 bytes in each record. While STORing
 a file on such a host, an FTP Server must be able to
 pad each line or record to 80 bytes; a later retrieval
 of such a file cannot be strictly invertible.

 4.1.2.5 Data Connection Management: RFC-959 Section 3.3

 A User-FTP that uses STREAM mode SHOULD send a PORT command
 to assign a non-default data port before each transfer
 command is issued.

 DISCUSSION:
 This is required because of the long delay after a TCP
 connection is closed until its socket pair can be
 reused, to allow multiple transfers during a single FTP
 session. Sending a port command can avoided if a
 transfer mode other than stream is used, by leaving the
 data transfer connection open between transfers.

 4.1.2.6 PASV Command: RFC-959 Section 4.1.2

 A server-FTP MUST implement the PASV command.

 If multiple third-party transfers are to be executed during
 the same session, a new PASV command MUST be issued before
 each transfer command, to obtain a unique port pair.

 IMPLEMENTATION:

 The format of the 227 reply to a PASV command is not
 well standardized. In particular, an FTP client cannot
 assume that the parentheses shown on page 40 of RFC-959
 will be present (and in fact, Figure 3 on page 43 omits
 them). Therefore, a User-FTP program that interprets
 the PASV reply must scan the reply for the first digit
 of the host and port numbers.

 Note that the host number h1,h2,h3,h4 is the IP address
 of the server host that is sending the reply, and that
 p1,p2 is a non-default data transfer port that PASV has
 assigned.

 4.1.2.7 LIST and NLST Commands: RFC-959 Section 4.1.3

 The data returned by an NLST command MUST contain only a
 simple list of legal pathnames, such that the server can use
 them directly as the arguments of subsequent data transfer
 commands for the individual files.

 The data returned by a LIST or NLST command SHOULD use an
 implied TYPE AN, unless the current type is EBCDIC, in which
 case an implied TYPE EN SHOULD be used.

 DISCUSSION:
 Many FTP clients support macro-commands that will get
 or put files matching a wildcard specification, using
 NLST to obtain a list of pathnames. The expansion of
 "multiple-put" is local to the client, but "multiple-
 get" requires cooperation by the server.

 The implied type for LIST and NLST is designed to
 provide compatibility with existing User-FTPs, and in
 particular with multiple-get commands.

 4.1.2.8 SITE Command: RFC-959 Section 4.1.3

 A Server-FTP SHOULD use the SITE command for non-standard
 features, rather than invent new private commands or
 unstandardized extensions to existing commands.

 4.1.2.9 STOU Command: RFC-959 Section 4.1.3

 The STOU command stores into a uniquely named file. When it
 receives an STOU command, a Server-FTP MUST return the
 actual file name in the "125 Transfer Starting" or the "150
 Opening Data Connection" message that precedes the transfer
 (the 250 reply code mentioned in RFC-959 is incorrect). The
 exact format of these messages is hereby defined to be as
 follows:

 125 FILE: pppp
 150 FILE: pppp

 where pppp represents the unique pathname of the file that
 will be written.

 4.1.2.10 Telnet End-of-line Code: RFC-959, Page 34

 Implementors MUST NOT assume any correspondence between READ
 boundaries on the control connection and the Telnet EOL
 sequences (CR LF).

 DISCUSSION:
 Thus, a server-FTP (or User-FTP) must continue reading
 characters from the control connection until a complete
 Telnet EOL sequence is encountered, before processing
 the command (or response, respectively). Conversely, a
 single READ from the control connection may include
 more than one FTP command.

 4.1.2.11 FTP Replies: RFC-959 Section 4.2, Page 35

 A Server-FTP MUST send only correctly formatted replies on
 the control connection. Note that RFC-959 (unlike earlier
 versions of the FTP spec) contains no provision for a
 "spontaneous" reply message.

 A Server-FTP SHOULD use the reply codes defined in RFC-959
 whenever they apply. However, a server-FTP MAY use a
 different reply code when needed, as long as the general
 rules of Section 4.2 are followed. When the implementor has
 a choice between a 4xx and 5xx reply code, a Server-FTP
 SHOULD send a 4xx (temporary failure) code when there is any
 reasonable possibility that a failed FTP will succeed a few
 hours later.

 A User-FTP SHOULD generally use only the highest-order digit
 of a 3-digit reply code for making a procedural decision, to
 prevent difficulties when a Server-FTP uses non-standard
 reply codes.

 A User-FTP MUST be able to handle multi-line replies. If
 the implementation imposes a limit on the number of lines
 and if this limit is exceeded, the User-FTP MUST recover,
 e.g., by ignoring the excess lines until the end of the
 multi-line reply is reached.

 A User-FTP SHOULD NOT interpret a 421 reply code ("Service
 not available, closing control connection") specially, but
 SHOULD detect closing of the control connection by the
 server.

 DISCUSSION:
 Server implementations that fail to strictly follow the
 reply rules often cause FTP user programs to hang.
 Note that RFC-959 resolved ambiguities in the reply
 rules found in earlier FTP specifications and must be
 followed.

 It is important to choose FTP reply codes that properly
 distinguish between temporary and permanent failures,
 to allow the successful use of file transfer client
 daemons. These programs depend on the reply codes to
 decide whether or not to retry a failed transfer; using
 a permanent failure code (5xx) for a temporary error
 will cause these programs to give up unnecessarily.
 When the meaning of a reply matches exactly the text
 shown in RFC-959, uniformity will be enhanced by using
 the RFC-959 text verbatim. However, a Server-FTP
 implementor is encouraged to choose reply text that
 conveys specific system-dependent information, when
 appropriate.

 4.1.2.12 Connections: RFC-959 Section 5.2

 The words "and the port used" in the second paragraph of
 this section of RFC-959 are erroneous (historical), and they
 should be ignored.

 On a multihomed server host, the default data transfer port
 (L-1) MUST be associated with the same local IP address as
 the corresponding control connection to port L.

 A user-FTP MUST NOT send any Telnet controls other than
 SYNCH and IP on an FTP control connection. In particular, it
 MUST NOT attempt to negotiate Telnet options on the control
 connection. However, a server-FTP MUST be capable of
 accepting and refusing Telnet negotiations (i.e., sending
 DONT/WONT).

 DISCUSSION:

 Although the RFC says: "Server- and User- processes
 should follow the conventions for the Telnet
 protocol...[on the control connection]", it is not the
 intent that Telnet option negotiation is to be
 employed.

 4.1.2.13 Minimum Implementation; RFC-959 Section 5.1

 The following commands and options MUST be supported by
 every server-FTP and user-FTP, except in cases where the
 underlying file system or operating system does not allow or
 support a particular command.

 Type: ASCII Non-print, IMAGE, LOCAL 8
 Mode: Stream
 Structure: File, Record*
 Commands:
 USER, PASS, ACCT,
 PORT, PASV,
 TYPE, MODE, STRU,
 RETR, STOR, APPE,
 RNFR, RNTO, DELE,
 CWD, CDUP, RMD, MKD, PWD,
 LIST, NLST,
 SYST, STAT,
 HELP, NOOP, QUIT.

 *Record structure is REQUIRED only for hosts whose file
 systems support record structure.

 DISCUSSION:
 Vendors are encouraged to implement a larger subset of
 the protocol. For example, there are important
 robustness features in the protocol (e.g., Restart,
 ABOR, block mode) that would be an aid to some Internet
 users but are not widely implemented.

 A host that does not have record structures in its file
 system may still accept files with STRU R, recording
 the byte stream literally.

 4.1.3 SPECIFIC ISSUES

 4.1.3.1 Non-standard Command Verbs

 FTP allows "experimental" commands, whose names begin with
 "X". If these commands are subsequently adopted as
 standards, there may still be existing implementations using
 the "X" form. At present, this is true for the directory
 commands:

 RFC-959 "Experimental"

 * MKD XMKD
 * RMD XRMD
 * PWD XPWD
 * CDUP XCUP
 * CWD XCWD

 All FTP implementations SHOULD recognize both forms of these
 commands, by simply equating them with extra entries in the
 command lookup table.

 IMPLEMENTATION:
 A User-FTP can access a server that supports only the
 "X" forms by implementing a mode switch, or
 automatically using the following procedure: if the
 RFC-959 form of one of the above commands is rejected
 with a 500 or 502 response code, then try the
 experimental form; any other response would be passed
 to the user.

 4.1.3.2 Idle Timeout

 A Server-FTP process SHOULD have an idle timeout, which will
 terminate the process and close the control connection if
 the server is inactive (i.e., no command or data transfer in
 progress) for a long period of time. The idle timeout time
 SHOULD be configurable, and the default should be at least 5
 minutes.

 A client FTP process ("User-PI" in RFC-959) will need
 timeouts on responses only if it is invoked from a program.

 DISCUSSION:
 Without a timeout, a Server-FTP process may be left
 pending indefinitely if the corresponding client
 crashes without closing the control connection.

 4.1.3.3 Concurrency of Data and Control

 DISCUSSION:
 The intent of the designers of FTP was that a user
 should be able to send a STAT command at any time while
 data transfer was in progress and that the server-FTP
 would reply immediately with status -- e.g., the number
 of bytes transferred so far. Similarly, an ABOR
 command should be possible at any time during a data
 transfer.

 Unfortunately, some small-machine operating systems
 make such concurrent programming difficult, and some
 other implementers seek minimal solutions, so some FTP
 implementations do not allow concurrent use of the data
 and control connections. Even such a minimal server
 must be prepared to accept and defer a STAT or ABOR
 command that arrives during data transfer.

 4.1.3.4 FTP Restart Mechanism

 The description of the 110 reply on pp. 40-41 of RFC-959 is
 incorrect; the correct description is as follows. A restart
 reply message, sent over the control connection from the
 receiving FTP to the User-FTP, has the format:

 110 MARK ssss = rrrr

 Here:

 * ssss is a text string that appeared in a Restart Marker
 in the data stream and encodes a position in the
 sender's file system;

 * rrrr encodes the corresponding position in the
 receiver's file system.

 The encoding, which is specific to a particular file system
 and network implementation, is always generated and
 interpreted by the same system, either sender or receiver.

 When an FTP that implements restart receives a Restart
 Marker in the data stream, it SHOULD force the data to that
 point to be written to stable storage before encoding the
 corresponding position rrrr. An FTP sending Restart Markers
 MUST NOT assume that 110 replies will be returned
 synchronously with the data, i.e., it must not await a 110
 reply before sending more data.

 Two new reply codes are hereby defined for errors
 encountered in restarting a transfer:

 554 Requested action not taken: invalid REST parameter.

 A 554 reply may result from a FTP service command that
 follows a REST command. The reply indicates that the
 existing file at the Server-FTP cannot be repositioned
 as specified in the REST.

 555 Requested action not taken: type or stru mismatch.

 A 555 reply may result from an APPE command or from any
 FTP service command following a REST command. The
 reply indicates that there is some mismatch between the
 current transfer parameters (type and stru) and the
 attributes of the existing file.

 DISCUSSION:
 Note that the FTP Restart mechanism requires that Block
 or Compressed mode be used for data transfer, to allow
 the Restart Markers to be included within the data
 stream. The frequency of Restart Markers can be low.

 Restart Markers mark a place in the data stream, but
 the receiver may be performing some transformation on
 the data as it is stored into stable storage. In
 general, the receiver's encoding must include any state
 information necessary to restart this transformation at
 any point of the FTP data stream. For example, in TYPE
 A transfers, some receiver hosts transform CR LF
 sequences into a single LF character on disk. If a
 Restart Marker happens to fall between CR and LF, the
 receiver must encode in rrrr that the transfer must be
 restarted in a "CR has been seen and discarded" state.

 Note that the Restart Marker is required to be encoded
 as a string of printable ASCII characters, regardless
 of the type of the data.

 RFC-959 says that restart information is to be returned
 "to the user". This should not be taken literally. In
 general, the User-FTP should save the restart
 information (ssss,rrrr) in stable storage, e.g., append
 it to a restart control file. An empty restart control
 file should be created when the transfer first starts
 and deleted automatically when the transfer completes
 successfully. It is suggested that this file have a
 name derived in an easily-identifiable manner from the
 name of the file being transferred and the remote host
 name; this is analogous to the means used by many text
 editors for naming "backup" files.

 There are three cases for FTP restart.

 (1) User-to-Server Transfer

 The User-FTP puts Restart Markers <ssss> at
 convenient places in the data stream. When the
 Server-FTP receives a Marker, it writes all prior
 data to disk, encodes its file system position and
 transformation state as rrrr, and returns a "110
 MARK ssss = rrrr" reply over the control
 connection. The User-FTP appends the pair
 (ssss,rrrr) to its restart control file.

 To restart the transfer, the User-FTP fetches the
 last (ssss,rrrr) pair from the restart control
 file, repositions its local file system and
 transformation state using ssss, and sends the
 command "REST rrrr" to the Server-FTP.

 (2) Server-to-User Transfer

 The Server-FTP puts Restart Markers <ssss> at

 convenient places in the data stream. When the
 User-FTP receives a Marker, it writes all prior
 data to disk, encodes its file system position and
 transformation state as rrrr, and appends the pair
 (rrrr,ssss) to its restart control file.

 To restart the transfer, the User-FTP fetches the
 last (rrrr,ssss) pair from the restart control
 file, repositions its local file system and
 transformation state using rrrr, and sends the
 command "REST ssss" to the Server-FTP.

 (3) Server-to-Server ("Third-Party") Transfer

 The sending Server-FTP puts Restart Markers <ssss>
 at convenient places in the data stream. When it
 receives a Marker, the receiving Server-FTP writes
 all prior data to disk, encodes its file system
 position and transformation state as rrrr, and
 sends a "110 MARK ssss = rrrr" reply over the
 control connection to the User. The User-FTP
 appends the pair (ssss,rrrr) to its restart
 control file.

 To restart the transfer, the User-FTP fetches the
 last (ssss,rrrr) pair from the restart control
 file, sends "REST ssss" to the sending Server-FTP,
 and sends "REST rrrr" to the receiving Server-FTP.

 4.1.4 FTP/USER INTERFACE

 This section discusses the user interface for a User-FTP
 program.

 4.1.4.1 Pathname Specification

 Since FTP is intended for use in a heterogeneous
 environment, User-FTP implementations MUST support remote
 pathnames as arbitrary character strings, so that their form
 and content are not limited by the conventions of the local
 operating system.

 DISCUSSION:
 In particular, remote pathnames can be of arbitrary
 length, and all the printing ASCII characters as well
 as space (0x20) must be allowed. RFC-959 allows a
 pathname to contain any 7-bit ASCII character except CR
 or LF.

 4.1.4.2 "QUOTE" Command

 A User-FTP program MUST implement a "QUOTE" command that
 will pass an arbitrary character string to the server and
 display all resulting response messages to the user.

 To make the "QUOTE" command useful, a User-FTP SHOULD send
 transfer control commands to the server as the user enters
 them, rather than saving all the commands and sending them
 to the server only when a data transfer is started.

 DISCUSSION:
 The "QUOTE" command is essential to allow the user to
 access servers that require system-specific commands
 (e.g., SITE or ALLO), or to invoke new or optional
 features that are not implemented by the User-FTP. For
 example, "QUOTE" may be used to specify "TYPE A T" to
 send a print file to hosts that require the
 distinction, even if the User-FTP does not recognize
 that TYPE.

 4.1.4.3 Displaying Replies to User

 A User-FTP SHOULD display to the user the full text of all
 error reply messages it receives. It SHOULD have a
 "verbose" mode in which all commands it sends and the full
 text and reply codes it receives are displayed, for
 diagnosis of problems.

 4.1.4.4 Maintaining Synchronization

 The state machine in a User-FTP SHOULD be forgiving of
 missing and unexpected reply messages, in order to maintain
 command synchronization with the server.

4.1.5 FTP REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
Implement TYPE T if same as TYPE N |4.1.2.2 | |x| | | |
File/Record transform invertible if poss. |4.1.2.4 | |x| | | |
User-FTP send PORT cmd for stream mode |4.1.2.5 | |x| | | |
Server-FTP implement PASV |4.1.2.6 |x| | | | |
 PASV is per-transfer |4.1.2.6 |x| | | | |
NLST reply usable in RETR cmds |4.1.2.7 |x| | | | |
Implied type for LIST and NLST |4.1.2.7 | |x| | | |
SITE cmd for non-standard features |4.1.2.8 | |x| | | |
STOU cmd return pathname as specified |4.1.2.9 |x| | | | |
Use TCP READ boundaries on control conn. |4.1.2.10 | | | | |x|
 | | | | | | |
Server-FTP send only correct reply format |4.1.2.11 |x| | | | |
Server-FTP use defined reply code if poss. |4.1.2.11 | |x| | | |
 New reply code following Section 4.2 |4.1.2.11 | | |x| | |
User-FTP use only high digit of reply |4.1.2.11 | |x| | | |
User-FTP handle multi-line reply lines |4.1.2.11 |x| | | | |
User-FTP handle 421 reply specially |4.1.2.11 | | | |x| |
 | | | | | | |
Default data port same IP addr as ctl conn |4.1.2.12 |x| | | | |
User-FTP send Telnet cmds exc. SYNCH, IP |4.1.2.12 | | | | |x|
User-FTP negotiate Telnet options |4.1.2.12 | | | | |x|
Server-FTP handle Telnet options |4.1.2.12 |x| | | | |
Handle "Experimental" directory cmds |4.1.3.1 | |x| | | |
Idle timeout in server-FTP |4.1.3.2 | |x| | | |
 Configurable idle timeout |4.1.3.2 | |x| | | |
Receiver checkpoint data at Restart Marker |4.1.3.4 | |x| | | |
Sender assume 110 replies are synchronous |4.1.3.4 | | | | |x|
 | | | | | | |
Support TYPE: | | | | | | |
 ASCII - Non-Print (AN) |4.1.2.13 |x| | | | |
 ASCII - Telnet (AT) -- if same as AN |4.1.2.2 | |x| | | |
 ASCII - Carriage Control (AC) |959 3.1.1.5.2 | | |x| | |
 EBCDIC - (any form) |959 3.1.1.2 | | |x| | |
 IMAGE |4.1.2.1 |x| | | | |
 LOCAL 8 |4.1.2.1 |x| | | | |
 LOCAL m |4.1.2.1 | | |x| | |2
 | | | | | | |
Support MODE: | | | | | | |
 Stream |4.1.2.13 |x| | | | |
 Block |959 3.4.2 | | |x| | |
 | | | | | | |
Support STRUCTURE: | | | | | | |
 File |4.1.2.13 |x| | | | |

 Record |4.1.2.13 |x| | | | |3
 Page |4.1.2.3 | | | |x| |
 | | | | | | |
Support commands: | | | | | | |
 USER |4.1.2.13 |x| | | | |
 PASS |4.1.2.13 |x| | | | |
 ACCT |4.1.2.13 |x| | | | |
 CWD |4.1.2.13 |x| | | | |
 CDUP |4.1.2.13 |x| | | | |
 SMNT |959 5.3.1 | | |x| | |
 REIN |959 5.3.1 | | |x| | |
 QUIT |4.1.2.13 |x| | | | |
 | | | | | | |
 PORT |4.1.2.13 |x| | | | |
 PASV |4.1.2.6 |x| | | | |
 TYPE |4.1.2.13 |x| | | | |1
 STRU |4.1.2.13 |x| | | | |1
 MODE |4.1.2.13 |x| | | | |1
 | | | | | | |
 RETR |4.1.2.13 |x| | | | |
 STOR |4.1.2.13 |x| | | | |
 STOU |959 5.3.1 | | |x| | |
 APPE |4.1.2.13 |x| | | | |
 ALLO |959 5.3.1 | | |x| | |
 REST |959 5.3.1 | | |x| | |
 RNFR |4.1.2.13 |x| | | | |
 RNTO |4.1.2.13 |x| | | | |
 ABOR |959 5.3.1 | | |x| | |
 DELE |4.1.2.13 |x| | | | |
 RMD |4.1.2.13 |x| | | | |
 MKD |4.1.2.13 |x| | | | |
 PWD |4.1.2.13 |x| | | | |
 LIST |4.1.2.13 |x| | | | |
 NLST |4.1.2.13 |x| | | | |
 SITE |4.1.2.8 | | |x| | |
 STAT |4.1.2.13 |x| | | | |
 SYST |4.1.2.13 |x| | | | |
 HELP |4.1.2.13 |x| | | | |
 NOOP |4.1.2.13 |x| | | | |

User Interface: | | | | | | |
 Arbitrary pathnames |4.1.4.1 |x| | | | |
 Implement "QUOTE" command |4.1.4.2 |x| | | | |
 Transfer control commands immediately |4.1.4.2 | |x| | | |
 Display error messages to user |4.1.4.3 | |x| | | |
 Verbose mode |4.1.4.3 | |x| | | |
 Maintain synchronization with server |4.1.4.4 | |x| | | |

Footnotes:

(1) For the values shown earlier.

(2) Here m is number of bits in a memory word.

(3) Required for host with record-structured file system, optional
 otherwise.

UnZip

About
Unzip.exe is included with the War FTP Daemon in order to provide a simple method to CRC check incomming .zip
achives. Unzip.exe is freeware and part of the unz520xN.exe distribution.

Original documentation

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

NAME
 unzip - list, test and extract compressed files in a ZIP
 archive

SYNOPSIS
 unzip [-Z] [-cflptuvz[abjnoqsCLMVX$]] file[.zip]
 [file(s) ...] [-x xfile(s) ...] [-d exdir]

DESCRIPTION
 unzip will list, test, or extract files from a ZIP archive,
 commonly found on MS-DOS systems. The default behavior
 (with no options) is to extract into the current directory
 (and subdirectories below it) all files from the specified
 ZIP archive. A companion program, zip(1L), creates ZIP
 archives; both programs are compatible with archives created
 by PKWARE's PKZIP and PKUNZIP for MS-DOS, but in many cases
 the program options or default behaviors differ.

ARGUMENTS
 file[.zip]
 Path of the ZIP archive(s). If the file specification
 is a wildcard, each matching file is processed in an
 order determined by the operating system (or file sys-
 tem). Only the filename can be a wildcard; the path
 itself cannot. Wildcard expressions are similar to
 Unix egrep(1) (regular) expressions and may contain:

 * matches a sequence of 0 or more characters

 ? matches exactly 1 character

 [...]
 matches any single character found inside the
 brackets; ranges are specified by a beginning
 character, a hyphen, and an ending character. If
 an exclamation point or a caret (`!' or `^') fol-
 lows the left bracket, then the range of charac-
 ters within the brackets is complemented (that is,
 anything except the characters inside the brackets
 is considered a match).

 (Be sure to quote any character that might otherwise be

 interpreted or modified by the operating system, par-
 ticularly under Unix and VMS.) If no matches are
 found, the specification is assumed to be a literal
 filename; and if that also fails, the suffix .zip is
 appended. Note that self-extracting ZIP files are sup-
 ported, as with any other ZIP archive; just specify the
 .exe suffix (if any) explicitly.

 [file(s)]
 An optional list of archive members to be processed,

Info-ZIP Last change: 30 Apr 96 (v5.2) 1

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 separated by spaces. (VMS versions compiled with
 VMSCLI defined must delimit files with commas instead.
 See -v in OPTIONS below.) Regular expressions (wild-
 cards) may be used to match multiple members; see
 above. Again, be sure to quote expressions that would
 otherwise be expanded or modified by the operating sys-
 tem.

 [-x xfile(s)]
 An optional list of archive members to be excluded from
 processing. Since wildcard characters match directory
 separators (`/'), this option may be used to exclude
 any files that are in subdirectories. For example,
 ``unzip foo *.[ch] -x */*'' would extract all C source
 files in the main directory, but none in any subdirec-
 tories. Without the -x option, all C source files in
 all directories within the zipfile would be extracted.

 [-d exdir]
 An optional directory to which to extract files. By
 default, all files and subdirectories are recreated in
 the current directory; the -d option allows extraction
 in an arbitrary directory (always assuming one has per-
 mission to write to the directory). This option need
 not appear at the end of the command line; it is also
 accepted before the zipfile specification (with the
 normal options), immediately after the zipfile specifi-
 cation, or between the file(s) and the -x option. The
 option and directory may be concatenated without any
 white space between them, but note that this may cause
 normal shell behavior to be suppressed. In particular,
 ``-d ~'' (tilde) is expanded by Unix C shells into the
 name of the user's home directory, but ``-d~'' is
 treated as a literal subdirectory ``~'' of the current
 directory.

OPTIONS
 Note that, in order to support obsolescent hardware, unzip's
 usage screen is limited to 22 or 23 lines and should there-
 fore be considered only a reminder of the basic unzip syntax
 rather than an exhaustive list of all possible flags.

 -Z zipinfo(1L) mode. If the first option on the command
 line is -Z, the remaining options are taken to be
 zipinfo(1L) options. See the appropriate manual page
 for a description of these options.

 -c extract files to stdout/screen (``CRT''). This option
 is similar to the -p option except that the name of
 each file is printed as it is extracted, the -a option
 is allowed, and ASCII-EBCDIC conversion is automati-
 cally performed if appropriate. This option is not

Info-ZIP Last change: 30 Apr 96 (v5.2) 2

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 listed in the unzip usage screen.

 -f freshen existing files, i.e., extract only those files
 that already exist on disk and that are newer than the
 disk copies. By default unzip queries before overwrit-
 ing, but the -o option may be used to suppress the
 queries. Note that under many operating systems, the
 TZ (timezone) environment variable must be set
 correctly in order for -f and -u to work properly
 (under Unix the variable is usually set automatically).
 The reasons for this are somewhat subtle but have to do
 with the differences between DOS-format file times
 (always local time) and Unix-format times (always in
 GMT) and the necessity to compare the two. A typical
 TZ value is ``PST8PDT'' (US Pacific time with automatic
 adjustment for Daylight Savings Time or ``summer
 time'').

 -l list archive files (short format). The names,
 uncompressed file sizes and modification dates and
 times of the specified files are printed, along with
 totals for all files specified. If UnZip was compiled
 with OS2_EAS defined, the -l option also lists columns
 for the sizes of stored OS/2 extended attributes (EAs)
 and OS/2 access control lists (ACLs). In addition, the
 zipfile comment and individual file comments (if any)
 are displayed. If a file was archived from a single-
 case file system (for example, the old MS-DOS FAT file
 system) and the -L option was given, the filename is
 converted to lowercase and is prefixed with a caret
 (^).

 -p extract files to pipe (stdout). Nothing but the file
 data is sent to stdout, and the files are always
 extracted in binary format, just as they are stored (no
 conversions).

 -t test archive files. This option extracts each speci-
 fied file in memory and compares the CRC (cyclic redun-
 dancy check, an enhanced checksum) of the expanded file

 with the original file's stored CRC value.

 -u update existing files and create new ones if needed.
 This option performs the same function as the -f
 option, extracting (with query) files that are newer
 than those with the same name on disk, and in addition
 it extracts those files that do not already exist on
 disk. See -f above for information on setting the
 timezone properly.

 -v be verbose or print diagnostic version info. This
 option has evolved and now behaves as both an option

Info-ZIP Last change: 30 Apr 96 (v5.2) 3

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 and a modifier. As an option it has two purposes:
 when a zipfile is specified with no other options, -v
 lists archive files verbosely, adding to the basic -l
 info the compression method, compressed size, compres-
 sion ratio and 32-bit CRC. When no zipfile is speci-
 fied (that is, the complete command is simply ``unzip
 -v''), a diagnostic screen is printed. In addition to
 the normal header with release date and version, unzip
 lists the home Info-ZIP ftp site and where to find a
 list of other ftp and non-ftp sites; the target operat-
 ing system for which it was compiled, as well as (pos-
 sibly) the hardware on which it was compiled, the com-
 piler and version used, and the compilation date; any
 special compilation options that might affect the
 program's operation (see also DECRYPTION below); and
 any options stored in environment variables that might
 do the same (see ENVIRONMENT OPTIONS below). As a
 modifier it works in conjunction with other options
 (e.g., -t) to produce more verbose or debugging output;
 this is not yet fully implemented but will be in future
 releases.

 -z display only the archive comment.

MODIFIERS
 -a convert text files. Ordinarily all files are extracted
 exactly as they are stored (as ``binary'' files). The
 -a option causes files identified by zip as text files
 (those with the `t' label in zipinfo listings, rather
 than `b') to be automatically extracted as such, con-
 verting line endings, end-of-file characters and the
 character set itself as necessary. (For example, Unix
 files use line feeds (LFs) for end-of-line (EOL) and
 have no end-of-file (EOF) marker; Macintoshes use car-
 riage returns (CRs) for EOLs; and most PC operating
 systems use CR+LF for EOLs and control-Z for EOF. In
 addition, IBM mainframes and the Michigan Terminal Sys-
 tem use EBCDIC rather than the more common ASCII char-
 acter set, and NT supports Unicode.) Note that zip's

 identification of text files is by no means perfect;
 some ``text'' files may actually be binary and vice
 versa. unzip therefore prints ``[text]'' or
 ``[binary]'' as a visual check for each file it
 extracts when using the -a option. The -aa option
 forces all files to be extracted as text, regardless of
 the supposed file type.

 -b treat all files as binary (no text conversions). This
 is a shortcut for ---a.

 -C match filenames case-insensitively. unzip's philosophy
 is ``you get what you ask for'' (this is also

Info-ZIP Last change: 30 Apr 96 (v5.2) 4

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 responsible for the -L/-U change; see the relevant
 options below). Because some file systems are fully
 case-sensitive (notably those under the Unix operating
 system) and because both ZIP archives and unzip itself
 are portable across platforms, unzip's default behavior
 is to match both wildcard and literal filenames case-
 sensitively. That is, specifying ``makefile'' on the
 command line will only match ``makefile'' in the
 archive, not ``Makefile'' or ``MAKEFILE'' (and simi-
 larly for wildcard specifications). Since this does
 not correspond to the behavior of many other
 operating/file systems (for example, OS/2 HPFS, which
 preserves mixed case but is not sensitive to it), the
 -C option may be used to force all filename matches to
 be case-insensitive. In the example above, all three
 files would then match ``makefile'' (or ``make*'', or
 similar). The -C option affects files in both the nor-
 mal file list and the excluded-file list (xlist).

 -j junk paths. The archive's directory structure is not
 recreated; all files are deposited in the extraction
 directory (by default, the current one).

 -L convert to lowercase any filename originating on an
 uppercase-only operating system or file system. (This
 was unzip's default behavior in releases prior to 5.11;
 the new default behavior is identical to the old
 behavior with the -U option, which is now obsolete and
 will be removed in a future release.) Depending on the
 archiver, files archived under single-case file systems
 (VMS, old MS-DOS FAT, etc.) may be stored as all-
 uppercase names; this can be ugly or inconvenient when
 extracting to a case-preserving file system such as
 OS/2 HPFS or a case-sensitive one such as under Unix.
 By default unzip lists and extracts such filenames
 exactly as they're stored (excepting truncation,
 conversion of unsupported characters, etc.); this
 option causes the names of all files from certain sys-

 tems to be converted to lowercase.

 -M pipe all output through an internal pager similar to
 the Unixmore(1) command. At the end of a screenful of
 output, unzip pauses with a ``--More--'' prompt; the
 next screenful may be viewed by pressing the Enter
 (Return) key or the space bar. unzip can be terminated
 by pressing the ``q'' key and, on some systems, the
 Enter/Return key. Unlike Unix more(1), there is no
 forward-searching or editing capability. Also, unzip
 doesn't notice if long lines wrap at the edge of the
 screen, effectively resulting in the printing of two or
 more lines and the likelihood that some text will
 scroll off the top of the screen before being viewed.

Info-ZIP Last change: 30 Apr 96 (v5.2) 5

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 On some systems the number of available lines on the
 screen is not detected, in which case unzip assumes the
 height is 24 lines.

 -n never overwrite existing files. If a file already
 exists, skip the extraction of that file without
 prompting. By default unzip queries before extracting
 any file that already exists; the user may choose to
 overwrite only the current file, overwrite all files,
 skip extraction of the current file, skip extraction of
 all existing files, or rename the current file.

 -o overwrite existing files without prompting. This is a
 dangerous option, so use it with care. (It is often
 used with -f, however.)

 -q perform operations quietly (-qq = even quieter). Ordi-
 narily unzip prints the names of the files it's
 extracting or testing, the extraction methods, any file
 or zipfile comments that may be stored in the archive,
 and possibly a summary when finished with each archive.
 The -q[q] options suppress the printing of some or all
 of these messages.

 -s [OS/2, NT, MS-DOS] convert spaces in filenames to
 underscores. Since all PC operating systems allow
 spaces in filenames, unzip by default extracts
 filenames with spaces intact (e.g., ``EA DATA. SF'').
 This can be awkward, however, since MS-DOS in particu-
 lar does not gracefully support spaces in filenames.
 Conversion of spaces to underscores can eliminate the
 awkwardness in some cases.

 -U (obsolete; to be removed in a future release) leave
 filenames uppercase if created under MS-DOS, VMS, etc.
 See -L above.

 -V retain (VMS) file version numbers. VMS files can be
 stored with a version number, in the format
 file.ext;##. By default the ``;##'' version numbers
 are stripped, but this option allows them to be
 retained. (On file systems that limit filenames to
 particularly short lengths, the version numbers may be
 truncated or stripped regardless of this option.)

 -X [VMS, Unix, OS/2] restore owner/protection info (UICs)
 under VMS, or user and group info (UID/GID) under Unix,
 or access control lists (ACLs) under certain network-
 enabled versions of OS/2 (Warp Server with IBM LAN
 Server/Requester 3.0 to 5.0; Warp Connect with IBM Peer
 1.0). In most cases this will require special system
 privileges; but under Unix, for example, a user who

Info-ZIP Last change: 30 Apr 96 (v5.2) 6

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 belongs to several groups can restore files owned by
 any of those groups, as long as the user IDs match his
 or her own. Note that ordinary file attributes are
 always restored; this option applies only to optional,
 extra ownership info available on some operating sys-
 tems. [Note that NT's access control lists are prob-
 ably compatible with OS/2's. A future release will
 support cross-platform storage and restoration of
 ACLs.]

 -$ [MS-DOS, OS/2, NT] restore the volume label if the
 extraction medium is removable (e.g., a diskette).
 Doubling the option (-$$) allows fixed media (hard
 disks) to be labelled as well. By default, volume
 labels are ignored.

ENVIRONMENT OPTIONS
 unzip's default behavior may be modified via options placed
 in an environment variable. This can be done with any
 option, but it is probably most useful with the -a, -L, -C,
 -q, -o, or -n modifiers: make unzip auto-convert text files
 by default, make it convert filenames from uppercase systems
 to lowercase, make it match names case-insensitively, make
 it quieter, or make it always overwrite or never overwrite
 files as it extracts them. For example, to make unzip act
 as quietly as possible, only reporting errors, one would use
 one of the following commands:

 UNZIP=-qq; export UNZIP Unix Bourne shell
 setenv UNZIP -qq Unix C shell
 set UNZIP=-qq OS/2 or MS-DOS
 define UNZIP_OPTS "-qq" VMS (quotes for lowercase)

 Environment options are, in effect, considered to be just
 like any other command-line options, except that they are
 effectively the first options on the command line. To over-

 ride an environment option, one may use the ``minus opera-
 tor'' to remove it. For instance, to override one of the
 quiet-flags in the example above, use the command

 unzip --q[other options] zipfile

 The first hyphen is the normal switch character, and the
 second is a minus sign, acting on the q option. Thus the
 effect here is to cancel one quantum of quietness. To can-
 cel both quiet flags, two (or more) minuses may be used:

 unzip -t--q zipfile
 unzip ---qt zipfile

 (the two are equivalent). This may seem awkward or confus-
 ing, but it is reasonably intuitive: just ignore the first

Info-ZIP Last change: 30 Apr 96 (v5.2) 7

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 hyphen and go from there. It is also consistent with the
 behavior of Unix nice(1).

 As suggested by the examples above, the default variable
 names are UNZIP_OPTS for VMS (where the symbol used to
 install unzip as a foreign command would otherwise be con-
 fused with the environment variable), and UNZIP for all
 other operating systems. For compatibility with zip(1L),
 UNZIPOPT is also accepted (don't ask). If both UNZIP and
 UNZIPOPT are defined, however, UNZIP takes precedence.
 unzip's diagnostic option (-v with no zipfile name) can be
 used to check the values of all four possible unzip and
 zipinfo environment variables.

 The timezone variable (TZ) should be set according to the
 local timezone in order for the -f and -u to operate
 correctly. See the description of -f above for details.
 This variable may also be necessary in order for timestamps
 on extracted files to be set correctly.

DECRYPTION
 Encrypted archives are fully supported by Info-ZIP software,
 but due to United States export restrictions, the encryption
 and decryption sources are not packaged with the regular
 unzip and zip distributions. Since the crypt sources were
 written by Europeans, however, they are freely available at
 sites throughout the world; see the file ``Where'' in any
 Info-ZIP source or binary distribution for locations both
 inside and outside the US.

 Because of the separate distribution, not all compiled ver-
 sions of unzip support decryption. To check a version for
 crypt support, either attempt to test or extract an
 encrypted archive, or else check unzip's diagnostic screen
 (see the -v option above) for ``[decryption]'' as one of the

 special compilation options.

 There are no runtime options for decryption; if a zipfile
 member is encrypted, unzip will prompt for the password
 without echoing what is typed. unzip continues to use the
 same password as long as it appears to be valid; it does
 this by testing a 12-byte header. The correct password will
 always check out against the header, but there is a 1-in-256
 chance that an incorrect password will as well. (This is a
 security feature of the PKWARE zipfile format; it helps
 prevent brute-force attacks that might otherwise gain a
 large speed advantage by testing only the header.) In the
 case that an incorrect password is given but it passes the
 header test anyway, either an incorrect CRC will be gen-
 erated for the extracted data or else unzip will fail during
 the extraction because the ``decrypted'' bytes do not con-
 stitute a valid compressed data stream.

Info-ZIP Last change: 30 Apr 96 (v5.2) 8

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 If the first password fails the header check on some file,
 unzip will prompt for another password, and so on until all
 files are extracted. If a password is not known, entering a
 null password (that is, just a carriage return) is taken as
 a signal to skip all further prompting. Only unencrypted
 files in the archive(s) will thereafter be extracted.
 (Actually that's not quite true; older versions of zip(1L)
 and zipcloak(1L) allowed null passwords, so unzip checks
 each encrypted file to see if the null password works. This
 may result in ``false positives'' and extraction errors, as
 noted above.)

 Note that there is presently no way to avoid interactive
 decryption. This is another security feature: plaintext
 passwords given on the command line or stored in files con-
 stitute a risk because they may be seen by others. Future
 releases may (under protest, with great disapproval) support
 such shenanigans.

EXAMPLES
 To use unzip to extract all members of the archive
 letters.zip into the current directory and subdirectories
 below it, creating any subdirectories as necessary:

 unzip letters

 To extract all members of letters.zip into the current
 directory only:

 unzip -j letters

 To test letters.zip, printing only a summary message indi-
 cating whether the archive is OK or not:

 unzip -tq letters

 To test all zipfiles in the current directory, printing only
 the summaries:

 unzip -tq *.zip

 (The backslash before the asterisk is only required if the
 shell expands wildcards, as in Unix; double quotes could
 have been used instead, as in the source examples
 below.) To extract to standard output all members of
 letters.zip whose names end in .tex, auto-converting to the
 local end-of-line convention and piping the output into
 more(1):

 unzip -ca letters *.tex | more

Info-ZIP Last change: 30 Apr 96 (v5.2) 9

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 To extract the binary file paper1.dvi to standard output and
 pipe it to a printing program:

 unzip -p articles paper1.dvi | dvips

 To extract all FORTRAN and C source files--*.f, *.c, *.h,
 and Makefile--into the /tmp directory:

 unzip source.zip "*.[fch]" Makefile -d /tmp

 (the double quotes are necessary only in Unix and only if
 globbing is turned on). To extract all FORTRAN and C source
 files, regardless of case (e.g., both *.c and *.C, and any
 makefile, Makefile, MAKEFILE or similar):

 unzip -C source.zip "*.[fch]" makefile -d /tmp

 To extract any such files but convert any uppercase MS-DOS
 or VMS names to lowercase and convert the line-endings of
 all of the files to the local standard (without respect to
 any files that might be marked ``binary''):

 unzip -aaCL source.zip "*.[fch]" makefile -d /tmp

 To extract only newer versions of the files already in the
 current directory, without querying (NOTE: be careful of
 unzipping in one timezone a zipfile created in another--ZIP
 archives to date contain no timezone information, and a
 ``newer'' file from an eastern timezone may, in fact, be
 older):

 unzip -fo sources

 To extract newer versions of the files already in the
 current directory and to create any files not already there

 (same caveat as previous example):

 unzip -uo sources

 To display a diagnostic screen showing which unzip and
 zipinfo options are stored in environment variables, whether
 decryption support was compiled in, the compiler with which
 unzip was compiled, etc.:

 unzip -v

 In the last five examples, assume that UNZIP or UNZIP_OPTS
 is set to -q. To do a singly quiet listing:

 unzip -l file.zip

Info-ZIP Last change: 30 Apr 96 (v5.2) 10

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 To do a doubly quiet listing:

 unzip -ql file.zip

 (Note that the ``.zip'' is generally not necessary.) To do
 a standard listing:

 unzip --ql file.zip
 or
 unzip -l-q file.zip
 or
 unzip -l--q file.zip (extra minuses don't hurt)

TIPS
 The current maintainer, being a lazy sort, finds it very
 useful to define a pair of aliases: tt for ``unzip -tq''
 and ii for ``unzip -Z'' (or ``zipinfo''). One may then sim-
 ply type ``tt zipfile'' to test an archive, something that
 is worth making a habit of doing. With luck unzip will
 report ``No errors detected in compressed data of
 zipfile.zip,'' after which one may breathe a sigh of relief.

 The maintainer also finds it useful to set the UNZIP
 environment variable to ``-aL'' and is tempted to add ``-C''
 as well. His ZIPINFO variable is set to ``-z''.

DIAGNOSTICS
 The exit status (or error level) approximates the exit codes
 defined by PKWARE and takes on the following values, except
 under VMS:

 0 normal; no errors or warnings detected.

 1 one or more warning errors were encountered, but
 processing completed successfully anyway. This
 includes zipfiles where one or more files was

 skipped due to unsupported compression method or
 encryption with an unknown password.

 2 a generic error in the zipfile format was
 detected. Processing may have completed success-
 fully anyway; some broken zipfiles created by
 other archivers have simple work-arounds.

 3 a severe error in the zipfile format was detected.
 Processing probably failed immediately.

 4-8 unzip was unable to allocate memory for one or
 more buffers.

 9 the specified zipfiles were not found.

Info-ZIP Last change: 30 Apr 96 (v5.2) 11

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 10 invalid options were specified on the command
 line.

 11 no matching files were found.

 50 the disk is (or was) full during extraction.

 51 the end of the ZIP archive was encountered prema-
 turely.

 VMS interprets standard Unix (or PC) return values as other,
 scarier-looking things, so unzip instead maps them into
 VMS-style status codes. The current mapping is as follows:
 1 (success) for normal exit, 0x7fff0001 for warning errors,
 and (0x7fff000? + 16*normal_unzip_exit_status) for all other
 errors, where the `?' is 2 (error) for unzip values 2 and
 9-11, and 4 (fatal error) for the remaining ones (3-8, 50,
 51). In addition, there is a compilation option to expand
 upon this behavior: defining RETURN_CODES results in a
 human-readable explanation of what the error status means.

BUGS
 Multi-part archives are not yet supported, except in con-
 junction with zip. (All parts must be concatenated together
 in order, and then ``zip -F'' must be performed on the con-
 catenated archive in order to ``fix'' it.) This will defin-
 itely be corrected in the next major release.

 Archives read from standard input are not yet supported,
 except with funzip (and then only the first member of the
 archive can be extracted).

 unzip's -M (``more'') option is overly simplistic in its
 handling of screen output; as noted above, it fails to
 detect the wrapping of long lines and may thereby cause
 lines at the top of the screen to be scrolled off before

 being read. unzip should detect and treat each occurrence
 of line-wrap as one additional line printed. This requires
 knowledge of the screen's width as well as its height. In
 addition, unzip should detect the true screen geometry on
 all systems.

 [MS-DOS] When extracting or testing files from an archive on
 a defective floppy diskette, if the ``Fail'' option is
 chosen from DOS's ``Abort, Retry, Fail?'' message, unzip may
 hang the system, requiring a reboot. Instead, press
 control-C (or control-Break) to terminate unzip.

 Under DEC Ultrix, unzip will sometimes fail on long zipfiles
 (bad CRC, not always reproducible). This is apparently due
 either to a hardware bug (cache memory) or an operating sys-
 tem bug (improper handling of page faults?).

Info-ZIP Last change: 30 Apr 96 (v5.2) 12

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 Dates and times of stored directories are not restored.

 [OS/2] Extended attributes for existing directories are
 never updated. This is a limitation of the operating sys-
 tem; unzip has no way to determine whether the stored attri-
 butes are newer or older than the existing ones.

 [VMS] When extracting to another directory, only the [.foo]
 syntax is accepted for the -d option; the simple Unix foo
 syntax is silently ignored (as is the less common VMS
 foo.dir syntax).

 [VMS] When the file being extracted already exists, unzip's
 query only allows skipping, overwriting or renaming; there
 should additionally be a choice for creating a new version
 of the file. In fact, the ``overwrite'' choice does create
 a new version; the old version is not overwritten or
 deleted.

SEE ALSO
 funzip(1L), zip(1L), zipcloak(1L), zipgrep(1L), zipinfo(1L),
 zipnote(1L), zipsplit(1L)

AUTHORS
 The primary Info-ZIP authors (current zip-bugs workgroup)
 are: Greg ``Cave Newt'' Roelofs (UnZip); Onno van der Lin-
 den (Zip); Jean-loup Gailly (compression); Mark Adler
 (decompression, fUnZip); Christian Spieler (VMS, MS-DOS,
 shared code, general Zip and UnZip integration); Mike White
 (Windows GUI, Windows DLLs); Kai Uwe Rommel (OS/2); Paul
 Kienitz (Amiga, Windows 95); Karl Davis and Sergio Monesi
 (Acorn RISC OS); George Petrov (MVS, VM/CMS); Harald Denker
 (Atari, MVS); John Bush (Amiga); Hunter Goatley (VMS);
 Antoine Verheijen (Macintosh); Chris Herborth (Atari, QNX,
 BeBox); Johnny Lee (MS-DOS, NT, Windows 95); Steve Salisbury

 (NT, Windows 95); and Robert Heath (Windows GUI). The
 author of the original unzip code upon which Info-ZIP's was
 based is Samuel H. Smith; Carl Mascott did the first Unix
 port; and David P. Kirschbaum organized and led Info-ZIP in
 its early days. The full list of contributors to UnZip has
 grown quite large; please refer to the CONTRIBS file in the
 UnZip source distribution for a relatively complete version.

VERSIONS
 v1.2 15 Mar 89 Samuel H. Smith
 v2.0 9 Sep 89 Samuel H. Smith
 v2.x fall 1989 many Usenet contributors
 v3.0 1 May 90 Info-ZIP (DPK, consolidator)
 v3.1 15 Aug 90 Info-ZIP (DPK, consolidator)
 v4.0 1 Dec 90 Info-ZIP (GRR, maintainer)
 v4.1 12 May 91 Info-ZIP
 v4.2 20 Mar 92 Info-ZIP (zip-bugs subgroup, GRR)

Info-ZIP Last change: 30 Apr 96 (v5.2) 13

UNZIP(1L) MISC. REFERENCE MANUAL PAGES UNZIP(1L)

 v5.0 21 Aug 92 Info-ZIP (zip-bugs subgroup, GRR)
 v5.01 15 Jan 93 Info-ZIP (zip-bugs subgroup, GRR)
 v5.1 7 Feb 94 Info-ZIP (zip-bugs subgroup, GRR)
 v5.11 2 Aug 94 Info-ZIP (zip-bugs subgroup, GRR)
 v5.12 28 Aug 94 Info-ZIP (zip-bugs subgroup, GRR)
 v5.2 30 Apr 96 Info-ZIP (zip-bugs subgroup, GRR)

Info-ZIP Last change: 30 Apr 96 (v5.2) 14

ProcessZip.exe

ProcessZip.exe is a simpe program for processing of incoming .zip files. It first calls UnZip.exe, and then tries to
extract the files spesified on the command line from the archive.

You will typically use this utility to extract file_id.diz or readme.txt files via the Upload Verification module.

If the CRC check is OK, the program will set the exit value to 0. The War FTP Daemon will thereby accept the
upload regardless of the extract status.

Sample

The following values in the Upload Verification module will perform a CRC check and first try to extract
file_id.diz, and then (if that fails) readme.txt.

Script name: ProcessZip.exe
Command line arguments: $f file_id.diz readme.txt
Exit status: Equals to 0

Note: ProcessZip does not know the path to UnZip.exe. Therefore you must either copy UnZip.exe to a directory
withing the scope of your PATH environment variable, or include the War FTP Server's home directory in your
PATH environment variable.

If the server reports -3 as return value, this means that UnZip.exe was not found, or could not be started.

The C++ source code for this program is included with the War FTP Daemon distribution to help you write your
own scripts.

